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SECTION 1

INTRODUCTION AND SUMMARY j "

1.1 INTRODUCTION

This report is concerned with the development and application

of improved techniques of digital signal processing, based on the

use of residue number systems (RNS), to implement the processing

functions associated with isolated-word speech recognition. It

constitutes final documentation, for fiscal year 1984, on MITRE

Mission Oriented Investigation and Experimentation (MOLE) project

7440: Advanced Architectures for Signal Processors.

Speech recognition is a computationally intensive application

for digital signal processing in which residue number system tech-

niques can play an effective role in reducing the computational

burden, or equivalently, in increasing the throughput rate at a -

fixed computational level. Under this project, we have explored the

use of RNS-based computations, in combination with systolic

architectures, for the improved implementation of speech recognition

algorithms. Our work has focused on a particular type of word

recognition algorithm that is based on an autoregressive model of

the speech production process and a dynamic programming approach to

effecting time registration between test and stored-reference speech

patterns. While other approaches to speech recognition are certain-

ly feasible and the subject of active research at many institutions,

the approach we have adopted is representative of the results of

many years of speech research occurring in a large segment of the

speech processing community. Our objective was not to advance the .-

state of speech research, but rather to concentrate on the RNS

implementation of a well-understood and commonly used method of

. "..... ... ..... ... ... ... ... ... ... ..
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speech recognition. We expect that the RNS implementation advan- /

tages demonstrated by our work will extend also to the processing

functions resulting from improved speech recognition research.

1.2 SCOPE

In the remainder of section I we will present a view of the iS-
fundamentals of speech recognition processing sufficient for under-

standing of our RNS implementation work. In section 2 we will

present a self-contained derivation of the Itakura-Saito distortion

function from a time-domain viewpoint, the distortion computation

being a central issue in any speech recognition process. Section 3

is devoted to a complete description of the dynamic time-warping

(DTW) algorithm used for time registration between test and refer-

ence patterns and its RNS implementation. Of particular concern is

a technique of quantization of the distortion values within RNS,

necessary to contain the dynamic range while allowing satisfactory

discrimination between word matches and mismatches. Section 4

discusses RNS implementation, in a linear systolic array, of the

sample autocorrelation function estimate upon which the distortion

computations are based. Also developed is the RNS architecture for

a two-dimensional systolic array, or computational wavefront pro-

cessor, in which the distortion function and dynamic programming

computations are carried out. Of particular concern is the pipe-

lining of the computations to maintain a high throughput in the

processor. Section 5 summarizes conclusions and presents recommen-

dations for further work. Necessary details of residue number

systems and their properties are contained in an appendix.

2
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1.3 SPEECH RECOGNiTION FUNDAMENTALS

The rudiments of a speech recognition process are pictured in

figure 1.1. In this process the input utterance, which is a word to

be matched to one in a reference library of stored utterances, is

analyzed in short blocks of overlapping segments from which a spec-

trogram, or time versus frequency plot, of the utterance may be '* -

constructed. Segmentation into short blocks allows the process to

he viewed as locally stationary, the time variation being accommoda-

ted by the sequential processing of overlapping analysis segments.

It is assumed that a similar analysis has been performed on the

utterances contained in the reference library. In both cases,

feature vectors are compared to produce a local measure of distor-

tion between segments of the test utterance, and those of one of the

reference utterances.

If there are n segments of the test utterance and m segments of

the reference utterance then the local distortions, based on a

Euclidean distance metric or something similar, define a two-dimen-

sional grid of n x m distortion values, the low values corresponding

to good matches between analysis segments and the high values corre-

sponding to poor matches. The purpose of the dynamic time-warping

algorithm is to effect time registration between the stored and test

segments to compensate for local time expansion or contraction of

the test utterance with respect to the reference. It is a dynamic

programming algorithm which calculates the accumulated weighted

distortions for the least-cost path through the grid of distortion

values. This score for the comparison of utterances is compared in

magnitude with the scores for other pairings to produce a final

decision as to which reference utterance provides the best match.

3
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The dynamic time-warping computations and distortion function

computations impose the greatest computational burden in the recog- '

nition process. Although the short-time spectral analysis, or -

feature extraction, computations can be quite complex, the analysis *

needs only to be performed once for each segment of the test utter-

ance. Although the distortion and DTW computations may not be as

complex, individually, there is a need to produce an array of dis-

tortion computations for each pair of utterances coupled with the

dynamic programming computations to produce a score comparing the

test utterance with each of the reference utterances stored in the

library. This is the computational bottleneck in the recognition

* process that we expect to impact with the combination of RNS compu- .- '-

tation and systolic array architecture.

1.3.1 Preprocessing of the Speech Waveform

Since the speech recognition process will involve digital

computations on overlapping segments of the analog speech waveform,

preprocessing of the speech signals is required to obtain the appro-

priate digital signals. The waveforms must be appropriately sampled

and quantized, the beginning and end of an utterance established,

-. the utterance segmented into overlapping blocks, and the segments

windowed for subsequent spectral processing. The sampling rate must

be high enough to prevent aliasing, the quantization must be suffi-

cient for satisfactory digital representation of the analog signal,

" and the segment length must be short enough to provide a stationary

sample of the spectrum yet long enough to provide adequate spectral

resolution. The reference patterns to be stored in the library must

be preprocessed in identical fashion to avoid artificial distortion

d:te to processing differences. In our experimental work, we have

5
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made use of a computer simulation, operating on the MITRE Corporate

* Research Computer Facility, which digitally processes speech wave-

forms that have been preprocessed in our Audio Signal Conversion

Laboratory (ASCL).

Input processing of the speech waveforms and their A/D conver-

sion are pictured in figure 1.2. Voice signals are picked up by the

microphone, amplified, and passed through low-pass filters to remove

frequency components above 4 kHz. After equalization to compensate

for a finite sampling aperture, the analog signals are converted to

12-bit digital samples at an 8 kHz sample rate by an A/D converter.

Output from the A/D converter is either stored in a designated file

for future input to the simulation or, in recognition mode, may be '. ".-

input directly to the speech recognition system implemented in the

simulation.

1.3.2 Utterance Detection

Detection of an utterance, as contrasted with a period of

silence, is regarded as a digital preprocessing function in our

work. In our experimentation, we have based utterance detection on

observation of energy statistics. The procedure is pictured in

figure 1.3. The energy statistic is a measure of the short-time

average signal energy minus the long-time (exponentially averaged) '

signal energy. Three thresholds are set as shown in the figure.

The beginning of an utterance is detected if the energy statistic

rises above the START threshold and remains above it until crossing

the HIGH threshold. The end of an utterance is detected if the

energy statistic falls below the END threshold and remains below it

for at least 150 msec. These events constitute a valid utterance

detection if the length from beginning to end is at least 240 msec. . ..

6
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1. 3. 3 Segmentation of the Utterance

After detection, an utterance must be divided into segments for

short-time analysis. The segmentation that we use in our experimen-

tation is shown schematically in figure 1.4. The analysis interval

should be long enough for good spectral resolution, yet short enough

to capture as stationary significant features of the utterance.

Extensive observation of speech waveforms has revealed that the

duration of stationary speech events varies over a wide range. Very

short events (such as those corresponding to the burst associated

with a plosive consonant) with a duration of only a few milliseconds

and very long events (such as those corresponding to the production

of a vowel) with a duration exceeding 350 milliseconds may be -

observed. Most stationary speech events have a duration in the

range of 12 milliseconds to 174 milliseconds; the distribution is

skewed so that the median duration (50 to 75 milliseconds) is always

shorter than the mean duration (60 to 85 milliseconds). Most

systems that analyze speech do so on a fixed time scale (about 20 to

25 milliseconds) that is considerably shorter than the median dura-

tion of stationary speech events and without regard for the location

of the event relative to the analysis interval. Some systems employ

overlapped analysis intervals (with an advance of about 10 milli-

seconds) so that the deleterious effects of employing a fixed time

scale and ignoring event location are reduced. We have chosen to

segment the utterances into 22.5 msec. blocks with an advance of 10

msec. Thus, each segment consists of 180 samples (at -n 8 kHz

sample rate) with each segment advanced by 80 samples. A typical

utterance may be blocked into as many as 60 segments. Each segment

is windowed by a Hamming window function for purposes of spectral

smoothing.

9
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1.4 SPECTRAL PROCESSING FOR FEATURE EXTRACTION

Generally, speech analysis is based on identification of spec-

tral features that form a time-varying pattern, or spectrogram, to

distinguish utterances. Short-time spectral analysis is used as a

means of dealing with speech segments over time intervals in which

the spectra are stationary, the concatenation of these spectral

segments forming the spectrogram. The spectral approach to speech

analysis is justified by the results of many years of experimenta-

tion and empirical observations and in the ability to accurately

model the vocal tract and its excitation with acoustical transmis- - =

sion-line models. Experimental evidence abounds to show that much

of the information contained, or perceived, in a speech signal is

coded by the collusion of a few formants, or natural resonant

frequencies, of the vocal tract.

Three methods of short-time spectral analysis are prevalent in

current speech recognition research: windowed discrete Fourier

analysis, processing in a band of contiguous frequency-selective

filters and spectral analysis based on linear predictive coding

(LPC).

Windowed discrete Fourier analysis is accomplished by computing

a set of time-overlapping discrete Fourier transforms of finite

length, the number of points being determined largely by the compu-

tational resources available. The filter-bank approach to spectral

analysis requires the signal being analyzed to be processed by a set

of bandpass filters. The highest spectral resolution is normally

provided at the low-frequency end of the spectrum and lower resolu-

tion, or larger bandwidth, is provided at the upper frequencies.

I. ]. .v .- , -
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Linear predictive coding (LPC) is based on a model of the

utterances produced by the vocal tract as a linear system driven by-

white noise or a pitch-synchronous, almost periodic pulse train.

Based on Wiener's (L949) work on Linear prediction of stochastic F

time-series, a number of recursive algorithms are available to

determine the parameters of the time-varying linear system, from

which it is a sinple matter to evaluate the system function in the

frequency domain to generate the spectrogram. Alternatively, the

. LPC parameters can be used directly as a means of encoding speech

, for pattern discrimination and recognition.

The LPC method is equivalent to autoregressive spectral estima-

tion, which in turn Is equivalent to maximum entropy spectral estt-

mation for Gaussian processes. We have chosen to use this method in

our RNS development for several reasons. One is the successful use

over many years of Itnear prediction theory for speech, which is

largely due to the natural fit of an all-pole model to the speech

3ignal during voicing, attribited to the absence of zeros in the -.

transfer function of the transmission-line model. Another consider-

ation is the maximum entropy viewpoint which does not constrain
artificially the data where it is not observed but rather produces a-

spectrum that presumes maximum uncertainty for the unobserved data.

Finally, the computations involved in processing the data involve

aoitocorrelatlon estimates rather than spectral filtering or trans-

forms, and these are well suited to RNS computation, articularly

with RNS systolic architectures that have been developed for trans-

versal filterng ,irider MITRF's Integrated Electroni,-s project.

12
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1.4.1 Autoregressive Spectral Estimation .

Autoregressive spectral estimation of speech is treated,'

thoroughly in the literature, but its essentials will be reviewed E_-.-m

here for completeness [1]. The autoregressive (AR) or linear pre- .- -"

dictive coding (LPC) model of speech assumes that speech may be

modeled as the output of a linear system of finite order having only

poles in Its frequency domain transfer function and driven either by

Gaussian white noise, or by a pitch-synchronous periodic signal,

depending on whether the sound is unvoiced (as for certain

consonants) or voiced (as for vowels). The parameters of the model

are estimated, from which it is a simple matter to generate the- -

power density spectrum.

The most common description of the AR model is in terms of the

model gain, a > 0, and a set of predictor coefficients {an;

n = 1, 2,..., PI which are selected so that a monic pth order

polynomial, zPAp(z), defined by - "

P
Ap(z) - Y anz-n; ao - 1 (1.1) -

has all its roots inside the unit circle z = ei . With these

parameters so defined, the pth order autoregressive, or AR(P),

model spectrum is given by

)= a (1.2)

Ap(e )Ap(e - )

13
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The requirement that zPAp(z) have all its roots inside the unit

circle is made so that the predictor coefficient sequence is .. '

unique. Note that for any root of zPAp(z) which is inside the

unit circle, there is a corresponding root of z-PAp(z -1 ) which

is outside the unit circle. By swapping corresponding roots between

this pair of polynomials, one obtains different sets of polynomial

coefficients without affecting (e). Among these 2P polynomials,

the one with all its roots inside the unit circle is called a mini-

mum phase polynomial.

In addition to providing a unique parametric description of the

AR(P) model spectrum, (3), the minimum phase condition is important

in that it is equivalent to stability for the linear shift invariant

filter with transfer function

P,(z) = ___ (1.3) "

Ap(z)

Ap(z) is often described recursively in terms of a sequence

of reflection coefficients. Thus

An(z) = An_l(Z) + Knz-nAnl(z-l); Ao(z) = 1 (1.4)

for n = 1, 2, ... , P. If IKnj < I and An.l(z) is minimum phase,

then An(z) is also minimum phase. Thus, Ap(z) is minimum phase V

if and only if every reflection coefficient in the set {Kn; n = 1,

2, ... , P} is less than one in absolute value. One virtue of

reflection coefficients is that they admit this simple test for the

minimum phase condition.

-.4..
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By expanding p(O) in a Fourier series, one obtains the follow- *

ing pair of relationships between the AR(P) model and its autocor-

relation coefficient sequence. 4 ..

i~O)= r ei5 (1.5a)n

fir W(D)eine de (1.5b)

Because 4i(e) is symmetric, rn =r-n. By equating the right-hand

side of equations 1.2 and 1.5a and then multiplying both sides of

the resulting equation by Ap(eie) one obtains

+OD 2
Ap(eio) ~'rne-in = 

%__
n Ap(e-io)(16

Then, by expanding both sides of this equation and equating coeffi-

cients of like powers of ei", one may derive the Yule-Walker, or

normal, equations expressed in matrix form as

. %.

15
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ro r ? .. rp a12

r I V ... rp- a 1

r? rr,) .. rP-.2 a 2  0 (1.7)

rp rp-t cP.. 2  .. ro ap 0

Given the trunc-ated sequence of autocorrelation coefficients {rn;

n = 0, 1, ... , PT the above symmetric Toeplitz coefficient matrix is

known, and one may solve equation (1.7) to determine the predictor

coefficients. vor this parameter set, the minimum phase condition -...

is equivalent to the condition that all principal minors of the ... I
coefficient matrix have a positive determinant. .

To organize the distortion function computation, to be dicussed

below, it is useful to define a sequence of inverse correlation

coefficients fun; rn 0, 1, ... , P} as ,

P

-P

These art- related to the parameters of the AR model by the equation, ~r

= aeaqf/J (1.9)

16
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1.4.2 The Itakura-Saito Distortion Function ,

The Itakura-Saito distortion function, upon which our work is

based, was introduced in 1970 as an analysts technique for making a .

maximum likelihood estimate of the power spectral density of an

autoregressive process modeled as the output of an all-pole filter

driven by white Gaussian noise [2]. Their original work has been

subsequently extended by a number of researchers, and variations of

their original idea have resulted in a number of related distortion

measures [3]. Below, we present the basic formulas that result when

the Itakura-Saito distortion is interpreted as a measure of spectral

matching. In section 2, we will present a different and self-

contained derivation that is developed in the time domain. -

Defining f(O) as the power spectral density of a test segment

and g(6) as the power spectral density of a reference utterance, the

Itakura-Saito distortion may be expressed as-p

T

d1 s(f,g) = f (9) -n-(-) 1dO (1.10)
g(O) g(O) 2n

When the spectra of the test and reference segments are the same,

the distortion is zero for an all-pole model spectrum and it is

possible to show by means of contour integration of equation (1.2)

in the complex plane that

17... '
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may then be written as

* dTS t ()d no2l + Zna (1.12)
g(O ) 27r

T n terms of the inverse correlation coefficients of equation (1.8),

* the remaining integral may be rewritten as

TrP It

* f(O)~~ d I un(g) f. f(O)e m O(.3
g(O) 27r . T

-iT n=-P -iT

The Integral on the right-hand side of equation (1.13) is simply the

sequence of autocorrelation coefficients {rn; n = 0, ±1, ..

whose discrete Fourier transform is the power density spectrum f(e),

as in equation (1.5). Then we have

7T P

-rf() O nu(g)rn(f) (1.14) ~K 1
-it n=-P &

18
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which is seen to be a scalar product between the vector of 2P + 1

autocorrelation coefficients r with the vector of inverse corre-

lation coefficients u. It is a fortunate consequence of the 
-

autoregressive model that only 2P + I autocorrelation coefficients --

of the test process are needed in the distortion computation (and

they are symmetric). When the process actually is pth order

autoregressive, these are sufficient to predict the remaining

coefficients and hence the power density spectrum. The distortion

function may finally be expressed as

P

a 9dls(f,g) - un(g)rn(f) - tn - 1 (1.15) "p."-, '

n=-P

This is the form of the Itakura-Saito distortion used for computa-

tion. In section 2 we will discuss determination of the variances . .
2 2 ,

af and ag.

In computing the distortion of equation (1.15), notice that

u, the vector of inverse correlation coefficients and the corre-
2

sponding variance ag for each reference segment may be precomputed

from the normal equations (1.7) and equation (1.9) and stored in the

reference library. For the segments of a test utterance, it is

necessary to determine r, the vector of 2P + I autocorrelation
2

coefficients and the variance af since these cannot be computed in

advance.

19

. .... .



15 DYNAMIC TIME-WARPING ";;'

r..

Although voice spectrograms provide distinct patterns for

discrimination and recognition, variations in speaking rate, speaker

inflections, and variations from speaker to speaker produce local .---

time variations in the patterns that must be compensated for effec-'. -'.'

tive comparison with the stored patterns. Dynamic programming, ".''-

p ..

introduced for speech recognition by Sakoe and Chiba [4], has been --..

- S-

successfully employed to bring about adequate time registration, but [[["

the computational complexity is high because of the need to register-

the segments of each test utterance against those of every reference

utterance, including variations of the same word, stored in theaker

reference library i n m a o k d c

The dynamic tme-warpng algorithm and its RNS implementation _

will be discussed in entirety in section 3. A systolic architecture

for the RmS implementation will be discussed in section 4.mi

" ~1.6 SUMMARY OF RESULTS . ,.,,,

The diagram of a speech recognition system based on linear

predictive coding (or autoregressve spectral estimation) and but

dynamic tme-warplng is shown in figure 1.5. This diagram o-registe

corresponds to a computer simulation model used extensively in our

RNS implementation studies. (The reader is referred to Appendix A

for a discussion of residue number systems and their properties.)

%4.6 M'.

P• •_1 .. -.

The dagra of speeh reogniion ystembase°on inea
20rdciecdn (ratrgesv specral.stimtion.an

.-"-dynamic.-.-.-. time*'7-warping.. is ..shown. in- figur .5. This'-'.. diagram-.',.--.. -.-" . .---. ,--.. --..'
....... corresponds-".to a-computer> siultonmoe 'ue extensively in" ' our" :i""•,".-,"."" <"
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As shown in figure 1.5, the speech waveform after preprocessing

*. is converted to 12-bit digital samples and segmented into over-

,," lapping blocks of 180 samples each which are windowed with a Hamming .-

window function. Thirteen autocorrelation values are estimated for

each segment. The LPC parameters are extracted by solution of the
2normal equations (1.7) with the process gain ag and the inverse

correlation coefficients un stored in the reference library. The

LPC computations are performed off-line and computed with floating

* point arithmetic, but the scaled and quantized parameters may be

stored in RNS code.

For the test samples, the same autocorrelation is performed

with the RNS values entered into the dynamic time warping processor

to be compared with the reference library segments. The Itakura-

Saito distortions are computed largely in RNS, as discussed in

section 3, to establish the DTW grid. The array of 60 x 60 points

is a typical value; actual utterances in our library range between

28 and 72 segments. The dynamic time warping path metric calcula-

tions are also carried out in RNS, as will be discussed in

section 3.

Extensive studies were made with this simulation model to

support our RNS implementation development and selection of RNS

parameters. Our studies have shown that RNS can be quite useful in

implementing a dynamic time-warping based speech recognition

algorithm, although some significant problems still remain.

22 . . -. ,
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Our architectural studies demonstrate that RNS computation is

quite natural for computing the correlation estimates needed in the

LPC analysis and in the Itakura-Saito distortion computation. In

fact, a linear systolic architecture can make use of hardware tech-

niques already developed for RNS implementation of a transversal -

equalizer under MITRE's Integrated Electronics project. The pipe- ."'

lined architecture will be discussed in section 4.

We have found that the dynamic time-warping calculations can be

profitably carried out in RNS if the Itakura-Saito distortion values

are first quantized into the range of a smaller RNS. In fact, '.

binary quantization (match or no-match) seems adequate if the

unquantized distortion values provide sufficient discrimination

between true and false word matches. We developed an algorithm for

performing the quantization within RNS, which is presented in

section 3, with the hardware implementation discussed in section 4.

Subject to these conditions, RNS seems useful both in computing

the distortion values and in accumulating the least-cost path metric

in the dynamic time-warping algorithm. In section 4, it is shown

how both these computations may be carried out in a pipelined two-

dimensional systolic array, with the data flow specified and impli-

cations for RNS implementation of the hardware discussed.

23
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* fore to develop a more practical method of MNS implementation, are

I the subject of continuing work, as will be discussed in our conclud-

* ing section 5.
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SECTION 2

USE OF THE ITAKURA-SAITO DISTORTION FUNCTION
FOR SPEECH RECOGNITION

2.1 INTRODUCTION

The Itakura-Saito distortion was derived originally for maximum m
likelihood estimation of the parameters of an all-pole filter used

for speech synthesis [2]. In their work, it was used in an experi-

mental system for speech analysis and resynthesis, and it demonstra-

ted good performance by comparison of sound spectrograms of the

input and resynthesized waveforms. They interpreted their distor-

tion function as having physical meaning for comparing power density

spectra of short-time speech records, a view which has appealed to

the speech processing community and which has been expanded in the

more recent literature [3].

Unquestionably, spectral models are useful and have a long his-

tory of use in the analysis of speech. They provide convenient men-

tal pictures that can be related to acoustic models of the vocal
tract and its excitation. Traditionally, speech patterns are repre-

sented by sound spectrograms presented as two-dimensional intensity

plots of time-varying power spectra. Trained speech researchers

learn to "read" such plots, demonstrating the ability to recognize

patterns not readily apparent in the temporal waveform. It is not

surprising, therefore, that speech recognition work is so heavily -

influenced by the spectral viewpoint. VI-

25. . -
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On the other hand, the Itakura-Saito distortion function is

well-suited to formulation in the time domain, such a formulation

being relatively simple and free from such sophisticated mathema-

• .tical notions as the asymptotic distribution of eigenvalues associa-

- ted with Toeplitz forms, results of which are needed in a rigorous

spectral approach [5]. Itakura and Saito modeled speech as an auto-

regressive random process produced at the output of an all-pole

linear filter driven by white Gaussian noise [6]. They showed that

this model, with its parameters obtained as a maximum-likelihood

estimate, minimized their distortion function. In an efficient

distortion computation based on a linear predictive coding model, L

the frequency spectra are not explicitly used, and in fact, an

appropriate distortion function can be derived entirely in the time

domain. In an application such as word recognition, a frequency-

independent approach may have merit in illuminating the essential

computational aspects. The temporal approach also leads naturally

to a matched-filtering interpretation which suggests an alternative -

computational implementation.

. 2.2 .A FREQUENCY-INDEPENDENT FORMULATION

We begin by expressing the distortion function as an average

log-likelihood ratio, which measures the distinguishability between

two random processes f and g [7].

p(xl f)
ds= Rn p(x lf)Zn -Fg dx.

*Rn. -- °g . 2
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The symbols f and g represent zero-mean Gaussian random proces-

ses corresponding to test and reference utterances, respectively.

In application to speech recognition, since the samples x are drawn

from the process f, the conditional probability density functions

are related by the inequality p(_xg) < p(xlf), therefore dis > 0.

Samples of the Gaussian process f can always be regarded as

linear combinations of samples of a white Gaussian noise process, in

other words, as the output of a stable discrete linear system driven

by samples of white Gaussian noise. The linear system may be des-

cribed in general by the linear difference equation,

L K

x(n) + Yatx(n - 9) = a ) BkV(n - k) (2.2)
k=0

where L < K, a2 is the variance of the input white noise process,

i and x(n) represents the sequence of output samples. For the

process g, we assume that the corresponding linear system is des-

cribed by the restricted difference equation

M
s(n) + Y ams(n - m) = agi(n). (2.3)

27
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2
In (2.3), ag is the variance of the input process and s(n)

represents the sequence of output samples. Notice that, unlike

x(n), s(n) depends only on the present and not on past input sam-

pies, and is referred to as an autoregressive random process (the

parameters am determine an all-pole filter in accordance with the .'.*--

frequency-domain transfer function corresponding to (2.3)). While
2

a is the variance of the input process, it will be convenient to

regard ag as the gain of the linear system driven by 0(n),

(n = 0, 1, 2, .) a sequence of samples of unit-variance white

Gaussian noise.

We assume that the distortion is to be computed for a sequence

of N samples x(n) of the test process f, and that the comparison is

to be made with the model of the reference process g that is des-

cribed by the linear system of (2.3). We denote by x the column

vector of N samples [x(0), x(1), ... , x(N - 1)]t and by R the

N x N matrix [rmn] of (ensemble-average) covariance values of x.

Similarly, we denote by S the covariance matrix of N samples of

the process g and we assume that M < N. With this notation, we may *

" express the conditional Gaussian probability density functions as

p(xlf) = 1 exp(- i x tR (2.4)
(2 )N/2 1/2-2.--"g..

a nd .- ,,.,"

p(xlg) = 1exp(- x gl X) (2.5) ,...,,
() N / 2 S 11/2 2 xt9W

-g

'".. . . . . . . . . ., *...
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where IRI signifies determinant(R). After substitution of (2.4) and

(2.5) into (1), the distortion may be expressed as,

1stg -1 t-d IS Ij ~ ti R (2.6)
d 1 5 =~tn-~- 2j- -f

where the overbar signifies the ensemble average over the multi-

variate distribution of x conditioned on f.

The second term of (2.6) may be expanded via

___f N-IN-

xt x = 1I ) 
1 .m xmxn (2.7)

T1fm0 n0O

where 1'f'mn is the cofactor of the element rmn in the deter-

minant of the covariance matrix jf. We recognize the inner sum as 1

Laplace's expansion of lI, consequently,

xtRf x =N (2.8)

and

Is'

14 1~ _ N _I t -1
=I jtnfRf 2 + - SX (2.9)
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To compute the ensemble average remaining in (2.9), we invoke

. properties of the linear system of (2.3). There exists a linear ....

system that is inverse to that of (2.3) in the sense that it is a
"whitening" filter for s(n). In other words, if the two systems

are cascaded and driven by white Gaussian noise, then the output is

also white Gaussian noise. The unit impulse response of the cas-

caded system must be a unit impulse. If one writes out a few terms

of the recursion of (2.3) for x(0) 0 0, and p(0) 1, U(n > 0) - 0,*.

then it is almost trivial to verify that the inverse filter is a

finite impulse response filter with its impulse response given by

the sequence

[h(O), h(l), ... , h(M)] = [1, a,, a2 , ... , aM]/ag. (2.10)

If we let v represent an N-vector [v(O), v(l), ... ,

v(N- 1)]t of output samples of the inverse filter, subject to

(unit-variance) white Gaussian noise input V - [11(O), I(1), ... ,

p(N - 1)], then the output covariance matrix, W = vv, may be ...

written as

W 11NtHt HIH t  HHt  (2.11)

30 C . .
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where H is an N x N Toeplitz matrix composed of impulse response

elements h(k),

ho

h1  1.)

h2  h, h0  0

1H= hM  I1_i . 11 h0  (2.12)

0 h. . . .

hM . h I  ho I

Since the inverse filter is a whitening filter for s = [s(O),

S() ... , s(N - i)]t, we also have vi = Hs. Consequently,

*'-. -.%-

St = H s st Ht = H S Ht.  (2.13)

Then, with reference to (2.11),

(2.14)
....-

which shows the covartance matrix of the reference speech model.-

samples to be the inverse of the covariance matrix of the output of

the Inverse filter (when driven by white Gaussian noise). Now, we

may write

31
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x fx xtW x-t (2.15)

where =g Wit is to be determined by (2.12) from the model

parameters of the reference process g.

Eis an N xN symmetric matrix with its elements determined

* as

M<M

Wmn = ) hkhlm..nI+k (2.16)
k-O

*for In n1 < M. For Im -ni > M, Wmn =0. En terms of the

*linear system parameters, for Im - ni < M,

rn<M *
Wmn = aka,+- .n A (2.17)

where, by deftnitioon, a0  1. It is convenitent to regard as

* the sum of two matrices,
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M- 0

WM W1  W0  W1  WO

woo0 W0 1  .

W1 0  Wil W

0 0

For m or n > M, we have expressed Wmn W~m-n1 in (2.18).

Except for the upper left hand M x M block, would be a

symmetric Toeplitz matrix, the form of a covariance matrix for a

wide-sense stationary process. It may seem odd that Hgis notLA

Toeplitz, but not if it is observed that gis the covariance

matrix of the output samples of a linear system driven by a station-

ary input, with zero-state initial conditions. The output of this

33



system is eventually stationary, after the initial transient . *

settles, but it is strictly non-stationary even though the input is

stationary [91.

*If we denote by r the vector of 2M + I elements r [rM,

* rM.1) -... , rl, r0, rl, .,rwJand similarly define A -[AM,

AMbA,, AO, A, ... , AM], then the bilinear form (2.15) can be S
written in terms of a scalar product

xt - (A-r) + I M - Mk(m -k Z )rkaZ~a+k.
a2 -- a k0 g (2.19)7

gY9 g = ~

* Now we have,

dj _ -I N + N- (A-r) +

(2.20) %

1 M 11472 (m-k-Q.)rkat~a+k...1
2a2 k0O t=1g

* ~For M << N, a good approximation is simply, .

dj i nI-g N2 + N (A .r). (2.21) *

2T-RfT Y 2o
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We will be concerned next with computation of the determinants

__I and 1 5.I Direct computation of the N x N determinants, by

using Laplace's expansion for example, would impose an enormous

computational burden since N is typically greater than a hundred :777

samples. But, since IS I = 1- , use of the parameters of the

all-pole filter model can save considerable work. Since =

HHt, the product of lower- and upper-triangular matrices, and
__ de(H~de(Ht) 2N

det(HHt) = det(H)det(H t ) 
= h0 , it follows immediately from -

(2.10) that

tnjgj = N Zn g (2.22)

As noted earlier, ag is the variance of the white noise

process driving the linear system of (2.3). It can be determined

readily from the normal equations which must be solved to determine

the system parameters [I].

so ,, S . ,S>.
~01 2* M 1

S1  S o  S1  . . . S a, 0

*a 2  0

= . (2.23)

S S Ssoa0
M M-1 M-2 S0 aM 0
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fi~~ter~ coefiiets

2***~

* asThe vecalr Oduct S osit of the first Mo of wahlhuesto o

;AsmdsmldI ttoay intral(.2).

* of the wovarae oflin No smdleo the tspect eec process sa

* autoregressive process of order M, then we can similarly determine

(ffrom the normal equations, but it is not necessary to actually

solve them. Let

r0  r1  r . I rM f

r, ro r, M1 b1

rM rH ro bM 0

* be the normal equations defining the parameters of the test p~roces

(assumed autoregressive). Application of Cramer's rule to (2.25)

yields, 
, -

36

%' . . . .



-.. 
Iapp.

2 -f(H
f (2.26)

I(ML)1
-f

where iJRM'I is the determinant of the (H-II) x (H+l) covariance

matrix and 1 pMlR is the cofactor of the first element. In this

case, rather than computing an N x N determinant, the autoregressive

assumption for the test process allows the computation of the ratio

of determinants of substantially smaller order, since generally

M<(N.

Finally, we may express the distortion as (approximately, for

Ma (N)

dI i n 091 _ - (A *r). (2.27)
2 of 2 2a2

g

If we define the normalized covariance coefficients for the-.
2

test process as Pk -r1k/af, then the approximate distortion

function (2.27) is expressed as

d ± ln N + N (A ap). (2.28)
2 2 2

37



;. .... "

%%

If the processes are identical, except for the input variances, then

(2.28) becomes

i in a2 _.N (I - 2:[j":'
d 2 2 2 (2.29)

I9

which would vanish for equal input variances.

2.2.1 Gain Normalization

For purposes of word recognition, we would like the distortion

function to be independent of relative differences between the model

input variances of the test and reference utterances. We would like

to recognize words produced by the same LPC model regardless of -A

intensity differences. For development of such a distortion func- ...

tion, it is appropriate to use a log-likelihood ratio based on nor-

malized Gaussian probability density functions.

Si

Le t

B = X/Of

(2.30)

R= R ff 2

-f f f

and consequently,
,Io.

ii I =IR I/a2N. (2.31)f -f f
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For the probability density of 3

p(B if) a~p(xlf) 1 _______ exp ( tRlJ(2.32)
f - (2rr,)N/ 21R1/

If y is a sample vector of the process g, then it has a probability

density function given by

1 ts-1~
p(ylg) =exp (- g y y) (2.33)

- (21rf)N/2 I s1172

and if we let

CLY/Og

(2.34)

then the normalized probability density function is

p(alg) -,Fr)I2 S 12 exp ( t1).(2.35)
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The gain-normalized distortion function can be derived from the -.. :

normalized average log-likelihood ratio

aI RN p(Blf)ln p(j)dB (2.36)
POWg

where B is the gain-normalized test utterance vector described in

*(2.30). With reference to the previous formulation, we observe that

I~gI I f I 1 as a result of the gain normalization. Then

d15 = tNI + 2t S (2.37)

*Since is the covariance matrix for B, the first term is simply

-N/2 and

-~ N 1
TiS + Bt 168 (2.38)

or, in terms of the observed test vector x

d15  + -S 2 ax (2.39)
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From (2.27), we may write the gain-normalized distortion function as % . ft

N N
dis 2 + 2 (A • r) (2.40)

2af

or, in terms of the normalized test correlation coefficients Pk,

- N N
IS - - + (A p _). (2.41)

This is the most convenient form for computation of the gain-

normalized Itakura-Saito distortion, expressed as the scalar product

of two normalized vectors, the vector A composed of the correlation

values of the parameters of the inverse filter model (the so-called V

inverse correlation coefficients) and those of p composed of values

of the N normalized covariance samples of the test process.

Although ensemble averages have been used in the formulations above,

stationarity allows for computation with time averages, the time

averages asymptotically approaching the ensemble averages for a

sufficiently large number of samples, equivalent to a long time

average.

41
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2.3 A MATCHED FILrERiNG INTERPRETATION ..

Let H represent the matrix of impulse response coefficients of

the inverse filter corresponding to the reference process g, as

given by (2.10) and (2.12). Let x, the sample vector drawn from the

test process f, be the input to the transposed system Ht, and let

z be the vector of output samples. Then the inputs and outputs are

related by the matrix equation

z =Htx. (2.42)

The sum of the squares of the output samples may be expressed as an -

inner product '

zz (Htx)t(Htx) =xtH Htx. (2.43) -

From (2.11) and (2.14),

ztz XtS-lx (2.44)

The term on the right hand side of (2.44) may be expressed as the

trace of a matrix product [71,

XtS-lx tr[fZl(x xt)1. (2.45)
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Taking the ensemble average of both sides of (2.44), we obtain

-tr[_ pl.--r r (2.46)

The vector z, from (2.42), may be interpreted as a result of -.-..

convolving the test sequence x with the inverse filter, or whitening "'

filter obtained by LPC analysis, but with the samples of x_ entering-.-Mtthe filter in reversed order Th sidage is taken over an ensemble

-'-, .-1.

of saTple functions x drawn from the test process f. If f is a -

wide-sense stationary ergodic process, then the averaging may be

,accomplished by squaring and adding the filter output samples over a

time interval that is long compared with the time intervals for

which the samples of x are correlated, the effective coherence

time. This condition should be satisfied for M < N.

In the expression for the gain-normalized distortion function

(2.37), we may write

s - tr RfIRf] + -1 tr[Sjljf]. (2.47)

* Since

tr[Nif] - N = tr:SjlSg] (2.48)
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and the trace is a distributive function, the distortion may also be

*.-. expressed as, ,

dis -tr[Sl(Rf (2.49)

The distortion as expressed in (2.49) may be interpreted as the re-

suit of passing the difference sequence (B - a), the difference be-

tween the normalized test and reference sample vectors, through the

normalized inverse system Ht to obtain the output vector

= lt(B - ci) (2.50)

and then forming the ensemble-averaged inner product

Et-- (St -at) tt( _ (2.51)

For stationary ergodic processes, this may be accomplished by

convolving the sequence (B- ), in reversed order, with the "

normalized LPC model inverse filter having the impulse response

values {l, a,, a2 , ... , a 4} and then squaring and adding the

output samples.

A principal difference with the matched filter implementation

is that the final distortion value is reached monotonically from

below rather than being computed as a convergent series with sign *..-.,. ,..:,

alternation as in a direct computation of (2.41). This could be

important in controlling the computational range of the processor in

44
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an integer computation. In practice it may be satisfactory to"..

replace the squaring detector at the output with one that simply

adds the magnitudes of the samples, thus compressing the integer

range of the output.

2.4 COMPUTATION IN A RESIDUE NUMBER SYSTEM

The key equations for computation of the distortion are equa-

tion (2.27) for the Itakura Saito, and equation (2.41) for the gain

normalized Itakura-Saito distortion. Equation (2.51) presented an .

alternative for computation of the gain-normalized distortion func-

tion, providing an output that increases monotonically to the final

value.

In a computation using the real numbers in a conventional L; i
weighted number system such as two's-complement, the use of equation

(2.51) rather than equation (2.41) could be important in containing

the dynamic range of the processor. In a computation using a resi-

due number system it makes little difference since, in RNS, inter-

mediate products may overflow the range available provided that the

eventual output is contained within the range of the RNS. (The

reader is again referred to Appendix A for a discussion of residue

number systems and their properties.)

If the Itakura-Saito distortion is used, then it will be neces-
2 2

sary to compute the logarithms of the squared gains af and ag.

It can be assumed that the reference gain term tnag has been pre- L
computed, converted to RNS representation and stored in the refer- -.

ence library. Similarly, solution of the normal equations to obtain .

45"
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* the vector A of inverse correlation coefficients (or the vector

Ala 2 / of normalized inverse correlation coefficients) can be2
assumed to have been precomp'uted, scaled and converted to RNS form

before being stored in the reference library. Computation of

-Znof, which is needed in equation (2.27), can be obtained from - -:

equation (2.26) as

- .-..-.

2 (M-1)()
-tnaO = ZnIR I -enI(RM). (2.52)

f -f -f-

The determinants in equation (2.52) can be computed in RNS if the

correlation values are scaled and converted to RNS, or are imme- . .

diately available if they have already been computed in RNS. The

logarithm, however, will necessitate conversion to a weighted number

system before computation, with the result converted back to RNS.

An excellent algorithm for logarithmic quantization for numbers

represented in two's complement form is contained in (10]. It

results in a simple hardware implementation. Conversion to and from

RNS using mixed-radix representation is described in Appendix A. -" .

N.,

If the gain-normalized Itakura-Saito distortion is used as in * ..

equation (2.41), then the normalized correlation coefficients
2

o - r/of must be computed. Although r may have been computed in

RNS, reconversion to a weighted number system to facilitate the

division is to be expected, after which the values can be scaled and

reconverted to RNS. This additional conversion process should not

be distressing since it occurs only once for each correlation

vector; whereas the distortion function must be cemputed for each

point in a constrained grid of points involved in the dynamic time

warping algorithm, to be discussed in section 3.

46
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SECTION 3

RESIDUE NUMBER SYSTEM IMPLEMENTATION
OF A DYNAMIC TIME-WARPING BASED SPEECH RECOGNITION SYSTEM

-. .. .

3.1 INTRODUCTION

The basic operation performed by a speech recognition system

(SRS) is the matching of an analyzed test pattern representing the

unknown word to be identified against stored reference patterns

which represent the words of the system vocabulary. A problem that

arises in this matching is the need for time registration of the

different speech patterns. The pattern representing one production

of a word will differ in length from the pattern representing

another production of the same word. Furthermore, individual parts

of a word may be stretched or compressed relative to the same parts

of another production of the same word. Attempts to perform linear

time registration of speech patterns have been largely unsuccess-
ful. However, time registration by dynamic programming [4,11] has

proven to be an effective means for comparing unknown test patterns __

against stored reference patterns of speech.

A dynamic time-warping (DTW) algorithm finds a shortest path

through a grid of points. Each point of the grid represents a

matching of a selected pair of short-time segments, or frames, of

the unknown test pattern and a given reference pattern. Associated

with each grid point is a value which is the calculated local dis-

tortion for the particular match of test and reference frames rep- -.

resented by the point. Associated with each path through the grid

is a distance which is a weighted sum of the local distortions for

grid points lying on the path. The output of the DTW algorithm is a

score, the distance of the shortest path through the grid, represen-

ting the degree of dissimilarity between the matched patterns.

47
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ComputatLonally, the most intensive portion of a DTW-based SRS

% is the calculation of the local distortion measures. This calcula-

tion must be promdfor each pitof the defined DTW giwhich

typically may contain several thousand points, and must be repeated

for each grid, that is, for each reference pattern contained in the

library. The distortion measures employed in our work have been

variants of the Itakura-Saito distortion measure [2]. This measure

has been selected because it has a strong theoretical justification,

is known to have performed well in existing recognition systems, and

is relatively easy to compute. The basic computation involved in '-...

evaluating this measure is an inner product calculation for a pair

of vectors of correlation and inverse correlation coefficients

representing the test and stored reference frames, respectively.

Inner product calculations are well-suited for implementation in RNS

if the end result does not need to be immediately translated back

from RNS to conventional arithmetic notation. This particular cal-

culation of the Itakura-Saito distortion presents both a challenge

and a considerable opportunity for RNS implementation. The chal-

lenge results from the apparent need to employ a large range in the

RNS calculations to avoid certain problems of truncation error

resulting from the integer conversion of the input data to the

calculation. The opportunity results from the established fact that

the range need not contain the (much larger) individual products or

sums accumulated during the inner product calculation, nor even the

scaled autocorrelation and inverse autocorrelation coefficients.

Overflow of the RNS during the calculation causes no harm as long as

the final result lies within the range of the RNS, and even occa-

sional overflow by the result may not be harmful to the DTW distance

computation.
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Three functions are required for dynamic time-warping: con-

struction of the DTW grid, the set of points (i(k),J(k)) on which ..- .

the DTW path is permitted to lie; evaluation of a local distortion

measure for all points of the grid; and solving to find the shortest .-.

path through the DTW grid from the point (1,I) to the p~int (m,n), -

where m is the number of reference frames and n is the number of .-

test frames to be matched. The shortest path algorithm is a special

simple case of dynamic programming [121. Construction of the DTW

grid and the calculations required to find the shortest path through

the grid are discussed in section 3.2. Calculation of the Itakura-

Saito distortion measure and its variants has been discussed . '

previously in section 2.

The remainder of section 3 is concerned with the implementation

of the DTW algorithm in RNS. The approach discussed in section 3.3

utilizes a two-part quantization of distortion values, first into

the range of a single modulus, and then to a single bit (match or

no-match). The quantization algorithm is described in section 3.4.

RNS implementation of the shortest-path calculation is treated in

section 3.5. Range considerations for the RNS implementation of .- -

dynamic time-warping are discussed in section 3.6. Finally, results

of simulations of RNS implementations of a DTW-based speech recogni-

tion system are presented in the concluding section 3.7. * °'

3.2 DYNAMIC TIME-WARPING ALGORITHM

The three functions contained in the dynamic time-warping algo-

rithm are illustrated in figure 3.1. In this section the determina-

tion of the DTW grid point set, given the number of reference frames

m, the number of test frames n, and a set of local and global path

constraints, is described, and the calculations required for finding "" ".

49 - .-.-
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the shortest path through the grid are derived for a particular

choice of local constraints. The unknown test utterance will always

be assigned to the y-axis (vertical), and the reference utterance b
4

'

will be assigned to the x-axis (horizontal).

3.2.1 DTW Path Constraints

Initially, before application of any constraints, the DTW grid

(figure 3.2) consists of the m x n points (i,j), 1 < i < m,

1 < j < n. Each point (i,j) represents the matching of the i-th

reference frame against the J-th test frame. Certain matches and

sequences of matches (i.e., paths) may be unreasonable to make, .

however, and should be ruled out in advance. Rules are adopted in a

speech recognition system to avoid such unreasonable paths and

pointless computation. It is the role of the local and global path

constraints to define these rules.

Local path constraints specify in a precise manner the ways in

which a particular path point (i(k),j(k)) can be reached from a pre-

ceding path point (i(k - 1), j(k - I)). Following Myers et al.

[11], we represent allowed local paths by a set of productions from

a regular grammar. A production is a rule of the form

P: (ajbl)(a2 ,b2 ) ... (aL,bL) (3.1)

where L is the length of the production, and the (a,b)'s are seg-

ments in a sequence of local moves. All a's and b's and L are

assumed to be (small) nonnegative integers. Using a production, a

local path to the point (i(k),J(k)) can be traced backwards to the

point (i(k - 1), j(k - 1)) through L - 1 intermediate points:
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k-th point: (i(k),j(k)) ,~-

s S

s-th intermediate point: (i~k) - ~ at, j(k) - bt)

L LJA
(k - )st point: (i(k -1),j(k 1 )) =(i(k) - 'ar, J(k) - ~ba

t~l t~l

This representation of local path constraints provides a great

deal of flexibility in their choice. The left-hand side of figure.

3.3 Illustrates the Type 3 constraints of Myers et al. [111, which

are specified by the four productions:

P3: (1,l)

These four productions define four distinct possible local paths to

a given point (i(k),j(k)) in the DTW grid, coming from the points

(i(k) - 2, J(k) - 1), (1(k) - 2, J(k) - 2), (1(k) - 1, j(k) - 1),

and (1(k) - 1, J(k) - 2), respectively. The first two of these

local paths also pass through the intermediate point (1(k) - 1,

J(k)). Note that for any local path to be valid, its starting point

(i(k - 1), j(k -1)) and its end point (i(k),J(k)) must belong to

the valid point set.
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A zero value for an a (b) in a production implies that the

corresponding reference (test) frame is to be matched with more than

one test (reference) frame. A value greater than one, on the other r-

hand, results in one or more reference (test) frames being skipped

(not matched) altogether. Thus, paths P1 and P2 of the Type 3 con-
straints allow a given test frame to be matched with more than one

, reference frame, while paths P2 and P4 permit the skipping of a test

frame. Under these constraints, each reference frame is used exact-

* ly once. Corresponding to the Type 3 constraints is a reflected .4.-'.

*ll version, the Type 3a constraints shown in the right-half of figure - "-

3.3. These are specified by the four productions:

P1: (O,l)(l,l)
P2: (0,1)(2,1)
P3: (1,i)
P4: (2,1)

For these constraints, paths PI and P2 match a given reference frame

against more than one test frame, while paths P2 and P4 permit a ..- ,.'

reference frame to be skipped, but each test frame is used once and

only once.

While there is no apparent reason for claiming that one set of .-.'. .

constraints will perform better than the other, it seems more

natural to require that each test frame be matched exactly once,

while allowing reference frames to be skipped or used more than

once. Thus, we tend to prefer the Type 3a constraints over the Type

3. Myers et al. in effect tested both types (along with a number of .-.

other sets of local constraints) by using the Type 3 constraints but

allowing the assignment of test and reference to the x- and y-axes ...

to be reversed. They found better results for the reversed case,

54
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which corresponds to using the Type 3a constraints. Furthermore,

there are computational advantages to requiring that each test frame

be matched exactly once; for then, the logarithm of the squared TAW
2

gain, af, of the test power spectrum does not need to be evaluated

in determining the local distortion values. This is because each

2
calculated value of af will be used exactly once in any legal path

from (1,I) to (m,n), and therefore can have no influence upon deter-

mining the best path.

Associated with each local path to a grid point (i,j) is a path

cost which is a weighted sum of the local distortion values for grid

points passed through by the path. One of the simplest of weight

functions takes the form

w(k) i 1(k) - i(k - 1) (3.2)

For this weight function, the weight assigned to a local path is the

distance traversed in the reference direction (i.e., the sum of the

a's in the production defining the local path). It is customary to

divide the weight equally among the segments forming the path.

Thus, for type 3 local constraints, this weight function assigns

unit weights to all path segments, whereas for the type 3a con-

straints a fractional weight will result for the segments of path

P1.

Local constraints limit the valid point set making up the DTW

grid in the following manner. For each procedure P of a local con-

straint, let sum(a) denote the sum of all the a's and let sum(b)

denote the sum of all the bVs. The slope of the local path is given

by the ratio sum(b)/sum(a). Let emax and emin denote the maximum

and minimum slopes, respectively, obtained over all productions P

56

.- .. .. . . . . . . . . . . . . . . . . . ."

~~~~~~~.-.-..- .. .. . .. ... .: -..... ....... ...... .... : .
°

."" ."", ,""" .""'.-.'.'' .. '-,'' -,---.,.,",- --"."-"-, ,"-. ." ,". -; -" ."s" . -" : ". ' . ," .' . ", - -''',. " " ,' '.-.6 1 .



. .' .- .

I.( %€...

comprising the local constraint. If we draw lines of slope emin and

emax through the endpoints (1,i) and (m,n), the resulting four lines

define a parallelogram in the initial DTW grid within which all

valid points must lie (see figure 3.4). Points intermediate to

local paths may lie outside this parallelogram, but the endpoints of

such paths must themselves lie on or within the parallelogram. In

figure 3.4 the parallelogram resulting from the Type 3 constraints

of [Ii] is shown, drawn in solid lines, for an illustrative example . -

representing ten reference frames and eight test frames.

Global path constraints were introduced by Sakoe and Chiba [4]

to further delimit the legal point set. These constraints take the

form

Ii(k) - j(k)j < g (3.3)

for some nonnegative integer g. They constrain the DTW path to lie

within a corridor of width 2g centered on a 45-degree diagonal

through the point (1,I). Of course, if Im - n > g, then the end-

point (m,n) cannot satisfy the global constraint, and no legal DTW

path can be found. Thus, in addition to restricting where the path

can lie, the global constraint can be used to rule out altogether a V.

search for the shortest path whenever the lengths of the test and

reference utterances are too dissimilar.

7. . -

¢;- ~~57 i".''



61 Ir -- -. 1

V%

• ,-. -".

A choice of g =0 will permit no path unless n m, in which " " *

case all local paths must begin and end on the diagonal from (1,1)

to (m,m). The global constraint usually limits the DTW grid by cut-

ting off the interior corners of the parallelogram defined by the

local constraints. In the example illustrated in figure 3.4, only

the lower right corner is in fact cut off by the severe global con-

straint g = 2. The resulting legal points comprising the DTW grid

are shown as solid grid points. The hollow or empty points lying

outside the parallelogram are intermediate points which may be

passed through in traversing certain local paths which begin and end -

in the legal point set. The selected local distortion measure must " .'i."

be evaluated for such intermediate points as well as for the points

in the legal set.

3.2.2 DTW Path Computations

Dynamic time-warping for speech recognition was first formu-

lated as a problem in dynamic programming by Sakoe and Chiba [4].

In fact, however, the problem of finding the best path through the

DTW grid reduces to a special simple case of dynamic programming

known as the shortest route problem. This problem can be stated

briefly as follows: Given a connected graph with two distinguished

nodes A and B and with a cost associated with each arc from a node i

-* to a node j of the graph, find the path (i.e., sequence of arcs)

from A to B whose summed cost is a minimum. Algorithms for finding

. an optimal solution to this problem were first given (independently)

a. by Moore [13] and Dantzig [14]. Subsequently, Bellman [15] formu- '

* lated the shortest route problem as a dynamic programming problem.

58-p . ,
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The network, or graph, to which the shortest route algorithm is

applied is defined as follows: Nodes of the graph correspond to

legal points of the DTW grid, with the grid point (1,I) as the node

A and the grid point (m,n) as the node B. The arc costs are defined :

as weighted sums of local distortions obtained for matches of refer-

ence and test frames corresponding to grid points passed through in

going from the grid point associated with node i to that associated _

with node J. For the type 3 local constraints and the weight func-

tion defined in equation (3.2), the costs defined for arcs of the

network derived from the DTW grid have the form

c(Pl) = c(P2) : di.l,j + dij
(3.4)

c(P3) = c(P4) = dij

-° where dii is the local distortion calculated between the ith ".

" reference frame and the jth test frame. The network derived from

the DTW grid for the example given previously in figure 3.4 and

assuming weight function (3.2) is shown in figure 3.5.

The minimum cost cij for any path to the node (i,j) is com-

puted (under type 3 constraints and weight function (3.2)) as

cij Min (dij + ci.j-li, dij + ci.lj-2,

(3.5)

dij + di-l, j + ci-2,i-I, dij + di-l, j + ci-2,j- 2 1

e 6 0 ".x'..4-'_

Pa.
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* where the first two terms of the minimization are the cost of reach-

ing (i,j) by local paths P3 and P4, and the latter two terms are the

cost of reaching (i,j) by local paths P1 and P2. Let

cj =dij + Min (ci.l,j.., ci...,J..2). (3.6)

Then

ci..l,j =di-..,j + Min (ci..2,J-l, ci-2,i-2) (3.7)

* and

=i Min (cij, dij + cm..l,j). (3.8)

cmn, the minimum cost for any path to node (m,n), is the score

returned by the DTW algorithm.

The shortest path computation for type 3 local constraints and

weight function (3.2) can be summarized as follows: r~

1. Compute the local distortion dij from the test

frame correlation coefficients mn~i) and the

reference frame inverse correlation coefficients

un(i)

* 62
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2. Compute cij = dij + Min (ci.l,jl, ci.l,J_2)

3. Compute cjj = Min (cij, dij + Cilj)

We would like to employ RNS for step 1, the computationally

most intensive calculation in a DTW-based speech recognition sys-

tem. The problem which arises if RNS is used is the magnitude

comparisons required for steps 2 and 3. . -

3.3 RNS IMPLEMENTATION OF THE DYNAMIC TIME-WARPING ALGORITHM

In order to make use of RNS for the local distortion calcula-

tions of a DTW algorithm, it is highly desirable to remain within

RNS for the entire DTW shortest path computation, leaving only to

convert the final score output by the algorithm for thresholding and

comparison with other scores to select the best match. As we have

seen in section 3.2, solution of the shortest path problem involves "

a sequence of additions and magnitude comparisons. In general, -

magnitude comparisons cannot be efficiently performed within RNS.

However, the magnitudes being compared in the shortest path computa-

tion may be similar. If their difference in absolute value does not

exceed half the largest modulus in use, then relative magnitude can

be determined without leaving RNS, simply by testing the difference

modulo this largest modulus. ks a first approach to an RNS imple-

mentation we tested the following hypothesis:

SHORTEST PATH DISTANCE HYPOTHESIS

The absolute differences of cumulative distances '"""-
compared in steps 2 and 3 of the shortest path
algorithm will generally not exceed half the
largest modulus we are willing to employ in a
residue number system of practical size.
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This hypothesis was tested by carrying out simulations using our DTW a.. .

simulation program. Histograms of differences arising in the short-

est path calculations were generated. The magnitudes of these

* differences depend upon the choice of local distortion measure. We

looked at what these differences typically are in a conventional

implementation for each of three distortion measures provided for in

the simulation program: Itakura-Saito distortion, Gain-Optimized

Itakura-Saito distortion, and Gain-Normalized Itakura-Saito

* distortion [3]. Three cases were examined:

1) identical test and reference templates;

2) similar test and reference templates; and

3) different test and reference templates.

The second case arises when the test and reference utterances are

different productions of the same word; the third arises when the

* test and reference utterances are productions of different words.

Results are summarized in Table 3.1, which gives the smallest

and largest differences encountered in each of the three cases for

each of the three distortion functions, together with the number of

divisions required to give a reasonable portrayal of the histogram.

The width of each division, except the first, is half that of its "

* successor. The first division has the same width as its successor .-

-" in order that all differences may be counted with a reasonable num-

ber of divisions. The distributions for the Itakura-Saito metric P

- are plotted in figure 3.6 for the cases of similar words (clear) and

" different words (cross-hatched).
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Table 3.1

Differences Arising in the Shortest Path Calculations

of the Dynamic Time-Warping Algorithm

Distortion Templates Smallest Largest Divisions

Measure

identical .0006 374.9607 13
I-S similar .0031 352.5326 13

different .0017 733.7631 14

identical .0004 11.8593 11

G-O similar .0002 7.3737 10
different .0007 11.2536 Il

identical .0009 37.7742 13
G-N similar .0011 23.4734 12

different .0027 151.2043 14

The number of divisions needed to cover the range of differ-

ences was at least ten for all distortion measures employed. It was

concluded that our first shortest path distance hypothesis is not

valid for distortions based on the Itakura-Saito distance measure.

Therefore, we considered quantization of the distortion function

leading to a modified distance hypothesis.

SECOND DISTANCE HYPOTHESIS

With appropriate quantization of local distor-

tion values, the absolute differences of cumula-
tive distances arising in steps 2 and 3 will not
generally exceed half the largest modulus we are

willing to employ in a residue number system of

practical size.
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For testing this revised distance hypothesis, an extreme

quantization of distortion function values to a single bit

(0 = match, 1 = no-match) was employed. A breakpoint threshold was

chosen; all distortion values exceeding the threshold were then set

equal to 1; all less than or equal to the threshold were set equal

to 0. To select the breakpoint, we first compiled histograms of

distortion function values for matching similar test and reference

templates (different productions of the same word) and different

templates (different words). These are shown (for the Itakura-Saito

metric) in figure 3.7, where, as before, the histogram for different

templates is cross-hatched. We seek a breakpoint that discriminates

well between the two different comparisons. On the basis of this

study, a breakpoint threshold of .5 was selected.

Histograms were then compiled of all finite differences, in

absolute value, arising in the DTW shortest path calculations, by 1.
running many test patterns against the entire reference library.

Under the extreme quantization employed, most of these differences

became zero (table 3.2); the nonzero differences were both rela-

tively few in number and small in size. This result supports the

second hypothesis that, with appropriate quantization of local

distortion values, it is feasible to carry out the DTW calculations

in the shortest route algorithm in a residue number system of

practical size.
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Table 3.2

Histogram of Differences in DTW Shortest Path Calculations:
One-bit Quantization of Gain-Normalized Itakura-Saito Distortion

Function Values - Breakpoint - .5

Difference Frequency of Occurrence

0 2227162
1 152344%
2 108417
3 73399
4 28900
5 17500
6 9726
7 5321
8 3654
9 1918

10 1149
11 772
12 510
13 300
14 141
15 94
16 59
17 35
18 18
19 22
20 5
21 3
22 7
23 2
24 2
25 5
26 2
27 2
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Quantization within RNS is difficult, in effect calling for

sign determinations. Our solution has been to employ a two-part

quantization, first quantizing from the range of the RNS into the

range of a single modulus, and then requantizing to a single bit,

using a threshold. The method developed for quantizing to the range

of a single modulus will be described in section 3.4. - 'i

The revised shortest path computation is as follows: .,.

1. Compute dij from rn(j) and un(i)

2. Quantize to single bit d'ij : 0 = match,.-

1 no-match

3. Compute ij = d'ij + Min(ci-l,-l, ci-l,J-2)

4. Compute cij = Min(cij, d'ij + ai-l,j)

Figure 3.8 is a block diagram of an RNS implementation of a DTW-

based speech recognition system. After detection of a test utter-

ance, input values. possibly scaled, are converted to RNS for calcu-

lation of the test correlation coefficients. Inverse correlation

coefficients from the reference library are scaled and converted to - 7 7

RNS (this would normally be done before storing them in the

library), and the distortion function is computed as an inner pro-

duct of vectors in RNS, The output of this calculation is quantized

in two steps, first to the range of a single modulus, and then to a

single bit. The shortest path through the DTW grid is obtained in

an RNS of reduced size as described in section 3.5. The resulting
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score is reconverted to a conventional number system for

thresholding and selection of the winning text. In section 3.6

questions of RNS range and scaling are discussed briefly. Simula-

: tion results for an RNS implementation of the SRS of figure 3.8 are

contained in section 3.7. -.. i

3.4 QUANTIZATION IN A RESIDUE NUMBER SYSTEM

3.4.1 Introduction

Our simulation experiments support the hypothesis that, with

appropriate quantization of local distortion values, it is feasible -

to perform the DTW shortest path calculations within a practical-

sized residue number system (RNS). However, this raises the

question as to how an appropriate quantization of these values is to

be obtained without first leaving RNS. We propose a two-phase quan-

tization, first from the range of the RNS to the range of a single

modulus, and then to a single bit. In this section, we show how to ,.. ..-

perform the first quantization in RNS.

At first glance, quantization of values within RNS appears to ".

be a formidable problem requiring, in effect, a series of magnitude

comparisons or sign determinations. In fact, however, the problem

may be greatly simplified because, at least in some applications,

there is some tolerance for error. Quantization divides the range

of an observed variable into, say, k intervals, and replaces each

value by the index of the interval within which it lies. The break-

. point dividing interval i from interval i + I is somewhat arbitrary,

' and it is expected that, at least in our speech recognition

- application, very little harm will come from errors made in the
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neighborhood of the breakpoint which cause a value lying in the i-th :.

interval to be erroneously recorded as lying in the (i + 1)-st

interval or vice versa. Based upon this tolerance of errors in the V-

breakpoint neighborhood, we have devised a method for quantizing the

values in the range of an RNS into the range of a single modulus

mi, in effect scaling by mIn M/mi, where M = mlm 2 ... mn is

the product of the n moduli mi, assumed to be relatively prime in -.

pairs, which comprise the RNS. The method can be employed for all -- -

sets of relatively prime moduli, but Involves some calculation.

The remainder of this section is divided into three parts

dealing, respectively, with the quantization function t(x) , the

calculations required to evaluate t(x), and the choice of moduli.

3.4.2 The Quantization Function t(x)

Any integer x can be represented in a residue number system by

n
X = Y i - MA(x) (3.9)il I I'"

where Ixlm -- x - mI[x/m], [y] denotes the greatest integer con-

tained in y, and A(x) is an integer-valued function first studied by

Aiken and Semon [16] and whose range is discussed in [17], Appendix . -

A. Suppose we divide our moduli mi into two groups which we call

p's and q's, where p, m 1 , P2 = m 2 , ql = m3, q2 = M 4 , ... , p ;

qn-2 - in, and define P = PlP2, Q = qjq 2 "qn-2, and

qi = Q/qi. Consider now the two RNS defined by the p's and

qs. We can express x in the first system as

73
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x P21X/P2Ip1 + P1IX/P1Ip - PAp(x) (3.10)

and -x in the second system as

-x =T S q1 - -jlq QAQ(-x). (3.11)

n--2
Let a(x) =P 2Ix/P2I1  + p1Ix/p1I P2 + i iI-x/iiIqi- (3.12)

* Then, by adding (3.10) and (3.11)

a(x) PAp(x) + QAQ(-x) (3.13)

*Define Q V1/QIp (3.14)

sl(x) =I GWxI 1 = I-AQ(-x)lpl (3.15)

and
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Note that si and q2 can be calculated within the RNS. Finally, let

t(K) =IS 2 (x) -s 1(x)tI.(317 I*s

What will the function t(x) look like?

First consider the function AQ(-x). We have A(kM + x)=

A(K) - k (see reference [1.81), and for 0 < x < M we have .-

*0 < A(x) < n, the number of moduli (see reference [17], Appendix

* A). Suppose first that the q-set consists of a si.ngle modulus.

Then -AQ(-x) = -1 for 0 < x < Q, -AQ(-x) = -2 for Q < x < 2Q,

and so forth. The quantities sj(x) and s2(x) remain constant over

any span kQ < x < (k + 1)Q; both decrease by one unit at the

transition of x from the value (k + l)Q to (k + l)Q + 1. However,

their difference, modulo pl, does not change except at every P2 -th

such transition. The first such change occurs for x = P2 * Q + 1
* when -AQ(-x) becomes -( 2 + 1.). A sim~ilar change will occur every

p2Q values thereafter. Thus, when the q-set consists of a single

* modulus, t(x) takes on the p, values 0, 1, p , 1 in some order

in blocks of length p2 * Q =i 1

Next, consider the case where the q's consist of two mnoduli, q,

and q2. Then -AQ(-x) takes on the two values -1 and -2 in the

range 0 < x < Q, the two values -2 and -3 in the range Q < x < 2Q,

and so forth. The quantities s, and S2 can vary by one unit over

the range kQ < x < (k + 1)Q, but their difference is normally

constant modulo pl. Both decrease by one unit at the transition

points but, again, the difference modulo p, is unchanged except at

*every P2 -th transition, and at certain values in the last sub-block

of Length Q before such a Lranslttoa, namely, those values
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x + (kP 2 - l)Q for 0 < x < Q for which AtQ(-x) =2 or, equiva-

lently, those values for 0 < x < Q for which AQ(x) = 1. For these

values t(x) turns too soon, creating an ambiguous neighborhood at

*the transition point. The length of this ambiguous neighborhood is

* known [171. Let j be the unique integer in [0, Q - 11 satisfying

I-A lq 1 for i 1,., n -2. Then the ambiguous

neighborhood has size j+ 1.

Example 1: p, =4, P2= 9, q, =5, q2  7

4' Then j =23 and we should find four blocks of length 315, with

an ambiguous area of length 24 at the end of each block. See table

3.3.-

Table 3.3 . -

t(x) for 4, 9,5, 7 Residue Number System

x t(x)

1- 291 1
292 - 315 1 or 2
316 - 606 2
607 - 630 2 or 3
631 - 921 3
922 - 945 3 orO0
946 - 1236 0
1237 - 1260 0 or 1
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The range of the system above 1236 should not be used, as

errors which are made here would map a value which belongs in the

last interval into the first interval. Other errors are presumed to

be relatively harmless. The size of the ambiguous neighborhood

depends only on the q's.

Finally, consider the case where there are more than two q's.-

In this case, AQ(x) may take on values greater than I in the in-

terval 0 < x < Q. If k is the largest value of AQ(x) in [0,

Q - 1], and j is defined as before, then the ambiguous neighborhood

has size (k - I)Q + J. The size attainable by k Is treated further L
In [171.

Example 2: p, 7, P2 11, q, 2, q2 =3, q3 =5

For this example k = I and J = 29. We expect blocks of length

330, with an ambiguous range of length 30 at the end of each block.

See table 3.4
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Table 3.4

t(x) for 7, 11, 2, 3, 5 Residue Number System

X t(x)

1 - 300 4
301 - 330 4 orlI
331 - 630 1 -

631 - 660 1 or5 W.1
661- 960 5
961- 990 5 or 2
991 -1290 2

1291 -1320 2 or 6 ~
1321 - 1620 6
1621 - 1650 6 or 3
1651 - 1950 3
1951 - 1980 3 or 0
1981 - 2280 0
2281 -2310 0 or 4

Example 2 (continued):

The range above 2280 should not be used, as an error occurring

here would map a value belonging to the last interval into the

first. Notice that the quantized values, t(x), of table 3.4 are -C

inappropriately ordered.

Since from (3.12) a(0) =0 (cf. equations 3.15 to 3.17), we-

*have t(0) =0, and, since there is a transition when x passes from 0

to 1, t(1) 0. Using this fact, we can transform the t(x) values **

* into an ordered sequence (1, 2, , p 1, 0) by a premultipli-

*cation by It(1Y)lpl. For example 2, we have t(1) =4 and

t(F1 I~ 11/417 2, resulting in table 3.5 in place of table

3.4:
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331 -. 630 2*1

63 f602or 7 11 2r 325 N

61 - 300 3 2
301- 330 3lor2 42or3
331 - 6390 2 3
11- 6620 42or3 53or4
11- 620 3 2
61- 9950 5or4 624or5

1651 - 1950 6 5
1951 -1980 6 or 0 5 or 6
1981 - 2280 0 6
2281 -2310 0oar 1 6 or 0

The third column of table 3.5 shows the effect of further

modifying the quantization function to eliminate the bias evident in

the second column. Again, observe that the useful range of x .-

extends only to 2280 rather than 2310.
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3.4.3 Calculations

CalculatLon of sl(x) requires a stmple table lookup for n I

* quantities which are summed in a modulo p, adder; calculation of

s2 (x) requires a simple table lookup for n - 1 quantities which are

* summed in a modulo P2 adder. Calculation of t(x) requires one

additional summation (subtraction) in the modulo p, adder.

From (3.12) (3.14) and (3.15) we have

n-2 *

s1(xW I~a(x)Ip1 = IQIp 1IxIp1 + 7 1&- IQ -~1 X/iIqj

n-2
+r 11-1qlIxq

* ~Similarly, *-

-n-2

92(W = tIxlp + 7 1I-1/qiI -/l.~ (3.19)
2 i= P21PI 2

* The quantities

ai 111/i Pj-/ili (3.20)

and 
.. t*
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bi q1p-1qilIjA q 11  (3.21)

can be precosiputed for the qj values txIqi and stored in

(hard-wired) tables.

Example 3: p, 4, P2 5, q 7,q 9. A

Then Q 13, a, 113x1714, a2 =1315xJ 914, b, 1213xi7 i., 4

b= 115x19 15 . The required lookup tables are illustrated in 4

table 3.6

Table 3.6

Tables for Quantization in 4, 5, 7, 9 RNS

x a, a2  b, b 13xIS

0 0 0 0 0 0 .

1 3 3 1 034
2 2 3 2 1 1

3 2 2 4 1 4

4 1 2 0 2 2

5 1 1 2 2-
6 0 1 3 3-
7 -0 -3

8 -0 -4-
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The last column provides a table for 13x1 5 , needed for computing 'A.-..

s2 (x). Since IQ4 = 1, no table is needed in this example to obtain

1QxI4 = Ix14. These tables should be easy to implement. For

example, if ixj9 is given in binary form, the b2 value can be

obtained in this example simply by dropping the last bit.

,.-.'...-

Figure 3.9 is a schematic block diagram depicting the

calculation of t~x) from the n residues Jxjp 1 XIp 2  !X~qj 1

.*.., { _2. The quantities IQxIp1 , IQxlp 2, ak, and bk

(k 1 1, ..., n - 2) are obtained from the residues by hard-wired

table lookups and fed to the two modular adders, producing the quan-

* tities sl(x) and s2(x), whose difference, modulo pl, defines t(x).

The modular adders in figure 3.9 are assumed to be (n - 1)-input -

adders. If only two-input adders are available, the summations

producing t(x) require n - I stages, as follows:

Step 1: Add IQxIl and a, in the modulo p, adder;

add {Qxl and b, in the modulo P2 adder.P2  P

Step k: Add ak to the contents of the modulo p1

adder; add bk to the contents of the

modulo P2 adder. A.

Step n-2: Add an_2 to the contents of the modulo p1  ..-

adder and output the result, sl(x); add

bn_2 to the contents of the modulo P2

adder and output the result, s2 (x).

Step n-i: Subtract sl (x) from s2 (x) in a modulo p1

adder, producing the desired result t(x).

82
. . . . .. . . . . . . . .. .

,~~~~~~~~~~~~ . . . . . . ... . .. .... .... .. -. .... ..... .. . . . . . . . . . . . . . . .: . .: : . .. .:
,.v:.'.".--. ,,. A-..-. *, -,-. *,*., . *.,- A*. . . .. . :.. . .. '. . ......- ,-.....-. ..* ,".



7. 7.- 7

-7. -



ADRI66 921 ADANE ARCHITECTURES FOR DIGITAL SIGNA PROCSOS V-(U) MITRE CORP BEDFORD MR A L SEGUILLRRD ET AL. OCT 65

N NTR-9647 RRDC-TR-S5-203 F19628-84-C- IOO/UNCLASSIFIED F/O 9/2 A

/mmmmmm/hmum
hhhhmhihhimhhl
IIIIIIIIIIIIE

IIIIIIIIIIII

IIIIIIIIIIII
/IllIli



'b

ISO-

-L-a.
u13 6'

11111N luiII!

,.cnco. c., r*2":. 4"

...--

* ° 4% .

, ,'~~.., .-. ..

.' .. . . . - .' -° .- '. .'- , ,, "..' . .. .- .- ' . .,. ,' .- , .- , . , . '. . . , . . .. . , . - .. - ., - . -. .. , ,. .. -. .. . - , . .. , ... . . ,,. '. .' .

...4 . . .' --.- .---. -* ..- i L .' ' _ 
"

' ,' _ * ,_, '' . . " . ""." % . .



,:-...,..,

Quantization by t(x) produces equally spaced intervals. If -

unequal intervals are desired, some additional computations may be

required to map the t(x) values into a reduced set. Modular reduc-

tion of t(x) may also be required to obtain its modular representa-

tion, unless p, is the smallest of the n moduli mi .

3.4.4. Choice of Moduli
[S I

From a given set of n relatively prime moduli mi comprising

an RNS, any given single modulus can be chosen as p,, and any

remaining modulus can be chosen as P2. The designation of p, and P2

determines the size of the modular adders required in the computa-

tion of t(x) but, since these adders are required in any event, it

should not influence the choice of p, and P2" The selection of p,

is primarily influenced by the particular quantization desired; e

the larger P, is, the more flexible are the choices for the ultimate

quantization. On the other hand, if p1 is the smallest of the n . .

moduli, it may be possible to avoid modular reduction of the quan- .

tized values. . -[

The size of the ambiguous range in each block is determined by -".

the choice of the q s. It is less than (but of the order of)

(n - 3)Q, whereas the block size itself is p2Q. The larger the

value of p2 , the greater the error-free portion of each block. It

may, therefore, be desirable to choose P2 to be the largest of the n

moduli, but this choice is not critical. However, P2 should

probably be somewhat larger than n -3.
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3.4.5. Conclusion

A method has been gien for providing quantization within a

residue number system from values (almost) anywhere in the range of

the system into the range of a single modulus. An alternative, of

course, is to perform a translation into a mixed radix number system

of each value x to be quantized. This calls for a roughly equiva-

lent amount of work (n - 1 table lookups and subtractions), but does

not in itself produce the desired quantization, requiring a further

division (or equivalent operation) upon the translated value, and a

possible reconversion of the result to RNS. It is felt that there

is a definite advantage to remaining within RNS for this computa- e

tion. This rather gross quantization appears to be appropriate for

mapping the results of local distortion computations into a small

range suitable for performing the DTW shortest path calculations

within RNS.

The method can easily be extended with the addition of more

modular adders to allow quantization to the range of a subset of the VAN Wfq

modult rather than to the range of a single modulus. To map values

from range H to range Pk = Pl, P2, .. , Pk-l, where our RNS

moduli have been divided into two sets with k and n-k members,

respectively, we replace (3.10), (3.11), and (3.12) by -"

k
X= Y Pjix/ lj - PAp(x) (3.22)

ilPi-

n-k
-x• .= ) .-

-X I-x/qilqi - QAQ(-x) (3.23) . .

k n-k

a(x) 1 piIx/pifi + ." 41-x/jqi (3.24)
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and replace P, and P2 by pk and Pk, respectively, in equations

(3.15), (3.16), and (3.17). To calculate sl(x) and t(x) in RNS, we

simply get a modular representation in terms of the pi. Thus, we

use k-i adders to calculate s1 (x) and t(x), and one more to .

calculate s2 (x).

3.5 RNS IMPLEMENTATION OF THE SHORTEST PATH ALGORITHM

Although a somewhat large range is required for an RNS

implementation of the Itakura-Saito distortion function calculation

(as will be seen from the discussion in section 3.6), the shortest

path calculation itself can be successfully performed in an RNS of . -

much smaller range. Two types of potential overflow must be --

considered. First, the magnitude comparisons of steps 3 and 4 of

the revised shortest path computation of section 3.3 are to be

performed in the largest residue channel. An overflow will result

if the difference, in absolute value, between the cumulative path

distances under comparison exceeds half the largest modulus

employed. Second, the cumulative distances themselves are

represented by residues in all channels used. An overflow results "

*' if the cumulative distance for the presumed best path exceeds the

range of the RNS. This is a serious error, generally leading to a

recognition error, for the resulting path score will be much lower

than its true value. "

We consider first this latter overflow possibility. Under

weight function 3 of equation (3.2), the cumulative cost for any

path cannot exceed the number of reference frames. While alterna-

tive weight functions can give higher costs, the most expensive

weight function we have employed results in paths whose cumulative

cost cannot exceed the sum of the number of test frames and the

. number of reference frames. Since the longest utterance in our test
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library consists of 72 frames, an RNS of range 144 or greater

suffices for the shortest path computation (under one-bit quantiza-

tion of distortion values). In a typical simulation run of sixty

test cases against the entire library, the largest path score

produced was 46, resulting from matching a 72-frame "four" and a

70-frame "five."

We plan to employ the two largest moduli from the set used for

the distortion calculations as an RNS for the shortest path calcula-

tions. For most of our simulations this has been the pair of primes

73 and 71, providing a range much greater than needed for this

computation.

The first type of overflow, though less harmful, is much more

likely to occur, and care should be taken to ensure that the first

residue channel is of sufficient size. Table 3.7 shows the number

of occurrences of errors of the first type for various choices of

RNS2 for the DTW path computations. In all cases shown, the corre-

lation and Itakura-Saito distortion function computations were

performed using an RNS1 composed of the five prime moduli

{73,71,67,61,591, and quantization of the distortion values was

performed in two stages, first to the range (0,72), and then to a

single bit (match or no-match) using a threshold value T = 16. The

last column of the table shows the recognition error rate for

simulations performed using our sixty-word test set consisting of

different productions of the ten digits and "oh" (The setting of the

global constraint always caused one error (1.7 percent) among the .........

sixty test cases).
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For the last two RNS {7,5} and {5,3} the RNS2 range is exceeded

much of the time by the cumulative distances. For the remaining

cases, the range is never exceeded by the cumulative distances. The

results displayed in table 3.7 support the hypothesis that little

harm results from occasionally overflowing the largest modulus in '€ S.

the path comparisons, provided that the number of overflows is not ., .,

excessive. No degradation in recognition performance was observed

until the largest modulus was reduced to 11, when the number of .,.A_

overflows exceeded 12000. No overflows occur when the largest * '".

modulus is 25 or greater.

Table 3.7

Number of Overflows of First Modulus and Recognition Error Rates
for Various RNS2 Choices for DTW Calculations - One-Bit

Quantization of Distortion Values - RNSI = {73,71,67,61,591;
Threshold - 16 "

Moduli Number of Overflows Recognition Error Rate

25,23 0 1.7
23,21 8 1.7
21,19 44 1.7 ""
19,17 314 1.7
17,15 364 1.7
15,13 976 1.7
13,11 4557 1.7
11,9 12390 6.7
9,7 38323 25.0
7,5 110438 61.7 ."-'S "b
5,3 294523 95.0 .

,.-:,. ,-2.."
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3.6 RNS RANGE AND SCALING

The Itakura-Saito distortion measure calculation has the form

dis scalar + Yrnun (3.25)
n

The range of the RNS to be employed must be sufficient to contain

the end-product of this calculation. Occasional overflow of the RNS

by the calculated distortion function would probably not cause much

harm; frequent overflow could affect recognition accuracy adversely;

constant overflow would destroy the information contained in the -'"-

distortion measure and render it useless for speech recognition.

We assume that the test correlation coefficients rn are com-

puted in RNS. It is possible to perform some scaling down of the

test utterance sample values before calculation of the rn. The

reference inverse correlation coefficients are normally small frac-

tional values, and must be scaled up before conversion to integer

values and RNS representation. Since this conversion will entail

truncation error, it must be performed with some care.

If the test input sample values are scaled by the factor 2-k"

then the rn values are scaled by 2-2k
. If then the reference -..

inverse correlation coefficients are scaled up by a factor 2h, the

"scalar" must be scaled up by a factor 2h
- 2k. The end result is

that the distortion function is scaled up by 2h
- 2k. For example,

if we scale the test input sample values by 2-2 and the reference

inverse correlation coefficients by 231, the result is to scale the

distortion function by 227. Since we have seen (figure 3.7)

unscaled Itakura-Saito distortions of the order of 23, we would

expect to need an RNS range of about 230 to contain this calcula-

tion. -
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In the RNS simulations reported in section 3.7, twelve-bit

input sample values were used for the test utterances. After

windowing (Hamming window) and RMS normalization, these were recon-

verted to integer values and clipped at ±2047. Before conversion to

RNS, these values can be scaled down a little, but not much or they

will incur truncation errors large relative to their size.

We looked at the unscaled inverse correlation coefficients.

The largest values (for 12-bit inputs) tend to lie in the range 10-6 '

to 10-5. These must be scaled up before conversion to integers and

RNS. We would probably like to scale these up by something like 108

to 109 to make them comparable in size to the unscaled test correla-

tion coefficients, but must take care that the resulting scaled

distortion values not exceed the RNS range more than occasionally.

In the next section, we show simulation results employing various

scalings for the five-modulus RNS (73, 71, 67, 61, 59), with range

approximately 1.25 x 109, or about 1.16 x 230.

3.7 SIMULATION RESULTS FOR IMPLEMENTATION OF DTW ALGORITHM IN RNS

3.7.1 Simulation Test Set

In this section we describe the results of simulations to

analyze the performance of an RNS-based DTW speech recognition

system, such as that illustrated in figure 3.8. In all simulations,

the Itakura-Saito distortion metric was used. All simulations were

performed using a limited-size single-speaker library consisting of

sixty utterances from an eleven-word vocabulary (the ten digits 0 -

9 and "oh"). The same set of sixty utterances was used as the test

set. Scoring a success required that both the best and second best

90
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guesses be the correct text. Tie scores, which would result in %

ambiguity, were counted as failures. The sixty test cases always

resulted In at least one failure which was caused by the setting of

the global constraint and not by the RNS implementation or the quan-

tization of Itakura-Saito distortion values. A conventional imple- :-_

mentation, running with full range distortion values, would have *.-

made the same error, as the global constraint eliminated from

consideration all reference patterns, other than that identical to

the test, with same text value in this one case. For most of the

simulations the RNS (73, 71, 67, 61, 59), with range approximately ft.

302 , was employed. In the remaining parts of this section, the

effects of input scaling, distortion function scaling, quantization

threshold, and RNS range upon recognition error rate for this simu-

lation are described. ft ft ft

3.7.2 Effect of Input Scaling on Recognition Error Rate

Figure 3.10 is a plot of the recognition error rate versus the

input scaling employed for a fixed Itakura-Saito distortion function

scaling by 227. (Of course, as the input scaling changes, the

inverse correlation coefficient scaling is also changed in a comple-

mentary way to keep the distortion scaling constant.) Input scaling ft 1

appears to have little effect on error rate until the scale factor

reaches 2 - . Test input values in the 12-bit range probably should

not be scaled down by more than 2•.

%tftft

.-.'.::

'ft f.. ft f '

ft.'i
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3.7.3 Effect of Distortion Function Scaling on Recognition Error ,.. .:

Rate "

Figure 3.11 is a plot of the recognition error rate versus the

Itakura-Saito distortion function scaling employed for a fixed input

scaling by 2-2. (Of course, as the distortion function scaling

changes, the inverse correlation coefficient scaling is also changed

in a complementary way to keep the input scaling constant.) Not

shown is the 90 percent error rate obtained for a distortion func-

tion scaling by 225. The high error rates obtained for the cases

225 and 226 reflect insufficient scaling of the reference inverse

correlation coefficients; the high error rate obtained for a distor-

tion function scaling by 229 reflects overflow of the RNS by the

distortion calculation.

Another view is presented in figure 3.12, which shows the

recognition error rates obtained for various combinations of test

input scaling, distortion function scaling, and inverse correlation

coefficient scaling (any two of which may be set independently). .

Acceptable performance was realized for certain combinations result-

ing in a distortion function scaling of 227 or 228. It is expected

that improved performance would result if the RNS range and distor-

tion function scaling were both increased together.

3.7.4 Effect of Quantization Threshold on Recognition Error Rate

Figure 3.13 shows the effect of the choice of the quantization

threshold employed for the second quantization, i.e., from the range

of the modulus 73 to a single bit, upon recognition error rate. For

these simulations the input values were scaled by 2- 3 and the . -

distortion function was scaled by 228. A threshold of 16 gave the
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best performance, but over a fair range the error rate does not

appear to be especially sensitive to this choice. (The results %

contained in figure 3.12 were all obtained using a threshold of 12.)

3.7.5 Effect of RNS Range on Recognition Error Rate

Figure 3.14 shows the effect of RNS range upon recognition-

error rate, with a constant scaling of the Itakura-Saito distortion

function values by 228. Test input values were scaled by 2 - and a

quantization threshold of 16 was used. Three different residue

number systems were employed: (73, 71, 67, 31, 29), with a range of

approximately 228; (73, 71, 67, 31, 59), with a range of approxi-

mately 229; and (73, 71, 67, 61, 59), with a range of approximately

2 30. The first RNS gave an error rate of 100 percent, the second an

error rate of about 40 percent, and the third an error rate of 1.7

percent. Clearly, the range is important. The RNS range must be

sufficient to contain the scaled distortion function values most of .

the time.
97. .
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SECTION 4
L

SYSTOLIC ARCHITECTURE FOR RNS IMPLEMENTATION

This section discusses the implementation of the autocorrela-

tion sample computation and dynamic time-warping (DTW) algorithm.

For the former, a linear systolic array is presented which allows

pipelined computation of the autocorrelation coefficients, while

accepting a continuous flow of input speech samples, without

requiring the insertion of zeros between adjacent frames.

For the DTW algorithm, a two-dimensional pipelined systolic

array of processing cells is discussed. Operation is pipelined for

both the distortion value and the path metric computation, yielding

the score for a pair of test and reference utterances at every step

of the operation.

Both arrays are well-suited for RNS implementation, as will be

discussed.

4.1 AUTOCORRELATION COMPUTATION

Let x = {xm, m > 01 be a set of equally spaced and appropri-

ately windowed samples representing the speech signal. We consider

a finite portion of the signal corresponding to a test utterance and

partition it into overlapping segments of M samples each as shown in

figure 4.1. The 9-th segment is denoted x(t) {(1),0 < m < M-11,

and the shift between segments is denoted by A.

... 9.
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From each segment a vector r(t) (r(, ) , rd')) of P+l ...

autocorrelation coefficients given by-.- .

M-1-n ,.:-2.,

r 7) = 7 x m) ( (4.1)
M=O

is to be extracted.

The values of M and A that we implement are 180 and 80 samples ,

respectively. With these parameters, at most three segments overlap "

at any time, and hence three correlators will be needed if the

correlation vectors are to be computed in a pipeline.

Figure 4.2 shows three correlators which switch the input data

stream on and off precisely at the beginning and end of their re-

spective segments. Thus, r(I) is computed by correlator 1, r(2 ) - "

by correlator 2 and r(3 ) by correlator 3. When the first sample

of segment 4, x = x3A, appears, all samples of segment 1 have

entered correlator 1, so it is ready to receive segment 4. Care has

to be taken so that in correlator I samples from segment 4 do not

mix with those of segment 1. This can be accomplished by the linear

systolic architecture which we now describe.

101.
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4.2 LINEAR SYSTOLIC ARRAY FOR AUTOCORRELATION COMPUTATION ....

Figure 4.3 shows a linear systolic array composed of P + I pro-

cessing cells and P + I delay elements forming the output register. . , .\ .

The input samples enter into the leftmost and rightmost cells and

are passed along to the next cell to the right and to the left,

respectively. At each step every cell forms the product of its two

inputs and adds it to its contents. After all 180 samples have been

operated on, the autocorrelation coefficients will be in the cell ,.'....

registers and at that point they can be passed down to the output

register and circulated out to the right.

A detailed example with 5 cells (P = 4) is developed at succes-
sive times in figure 4.4. Input samples are interleaved with zeros,

and the left input enters the array first, from the left, so that it

meets the first sample from the right input at cell 0. The figure

shows the state of the array at consecutive time instants. As the

signals progress through the array, sums of products -

accumulate in each cell, with the computation of rn)taking place

in cell n, 0 < n < P.

Figure 4.5 shows the last few samples of a segment, followed by

zeros. At the end of the process, the n-th autocorrelation coeffi-

cient resides in cell n, 0 < n < P, at which point it can be fed out

serially in the manner already described, or in parallel (tech-

nically violating the systolicity of the operation), if needed.

° . ,. ~
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~~In pipelined operation, samples of a new segment may (depending."'

N.-.

~~.'*

on the values of M and A) enter the array before the computation of

the present segment's autocorrelation vector has been completed, and

a cell may receive inputs from both segments at the same time, in

which case they should be ignored. This can be taken care of by

attaching a control bit to the first sample of the left input seg-

ment and to the first sample of the right input segment. The left

control bit appears at any given cell when the last term in the sum

is being computed and it instructs the cell to ignore subsequent . -

inputs, both from the left and from the right, until the control bit

in the first sample of the new segment coming from the right

appears, instructing the cell to output its contents, clear its

accumulator and resume operations, as the computation of the corre-

sponding coefficient of the new segment begins.

Figure 4.6 illustrates the interplay of the two control bits.

The old segment is labeled x0 , x1 , ... , xM.l, and the new segment

y0 , Yi, "'•, Yn-I" The samples carrying control bits are

circled. The arrows emerging from the bottom of the cells indicate

that the result has become available.

The equations governing the operation of each cell are shown in

figure 4.7. The left input is indicated by a subscript 1 and the

right input by a subscript 2; the time index is n and is shown in

parentheses. The corresponding control bits are CI(n) and C2 (n).

The quantities u(n) and s(n) are state variables. The variable u(n)

is used in the operation of the control bits; it is initially a zero

and it changes its value every time a control bit appears. The

result is that u(n) = 1 precisely when the cell is computing, and

u(n) = 0 between the computations of consecutive segments, when the

cell is ignoring its inputs. The variable s(n) stores the partial

sums and r(n) is the output.
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4.2.1 RNS Hardware Concept

Appendix A discusses the fundamentals of residue number p.

systems.

Consider implementing equation (4.1) in an RNS with prime

moduli pl, P2, "'', pt, and range M. First, the input must be

converted to residue form. Then, for each k, equation (4.1) is

computed modulo pk. This requires one set of correlators like the

one in figure 4.2 for each modulus. The output, the residues of the

autocorrelation coefficients, are then used for the computation of

the local distortion.

The configuration of the correlator using Z residue channels is

shown in figure 4.8. For each channel, a copy of the control bits

cl and C2 must accompany the inputs.

Figure 4.9 shows the structure of each correlator cell. Each

cell uses one mod p multiplier and one mod p adder, six data regis-

ters, a few gates and switches and some control logic which controls

the output flow. ',
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The detailed designs of the modulo p adders and multipliers, as -

well as the binary-to-residue converter, were carried out by MITRE's

Integrated Electronics project to implement a transversal equal- ,...

izer. They developed a logarithmic mod p (p is prime) multiplier.

To multiply two residues a and b modulo p, their logarithms base a -.

(where a is another fixed element of the field) are computed. The

two quantities are added modulo p and the inverse logarithm of the

result is then computed. Symbolically,

logAB logcA + logB.

Figure 4.10 shows a block diagram of the multiplier that was "

developed under the Integrated Electronics project.

A great savings is realized if the logarithms of the input

signals are computed before they enter the array, for then only the

inverse logarithm needs to be computed in each cell. This idea was

used by MITRE's Integrated Electronics project to implement a trans-

versal filter.

To select the moduli we assume a frame length of 180 samples,

an LPC model of 13 poles and no zeros, and input speech samples in

the range [-28 ,28]. An upper bound on the absolute value of the

size of the autocorrelation coefficients is then given by 180(28)2,

or a range of about [-224,22 ]. The distortion values will then lie

in the range [-256 ,25 61, which is required to contain the dot

product of two feature vectors. However, it was determined by simu-

lation that, for virtually all inputs occurring in practice, the

required dynamic range is only 1-23 3 ,23 3), which is spanned by the

five seven-bit moduli 103, 107, 109, 113, and 127. t... v.
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4.3 SYSTOLIC ARRAY FOR DTW COMPUTAT[ONS

Once the correlation vectors for the test segments have been

computed (and the logarithm of the process gain, if the

Itakura-Saito distortion function is used), the DTW computations can

be carried out in a pipeltned two-dimensional processing array. It

is assumed that the inverse-autocorrelation coefficients ( and -

logarithm of the process gain) for the reference segments are

.. available in a stored reference library and need no computation

during the speech recognition processing.

The DTW computations, as noted in section 3, separate into

computatton of the distortion dij between the ith test segment and

jth reference segment and the actual path metric computations asso- .

,,ated with the dynamic programming algorithm to find the metric of C

the shortest path.

The local distortion computation (for the Itakura-Saito metric)

Involves formation of a scalar product between the test and refer-

nce vectors of correlation and inverse correlation values with the

addition of a constant term dependent on the logarithmic ratio of

the process gains, followed by quantization within RNS as discussed

in section 3. The dynamic programming algorithm uses the quantized '.9
distortion values in a decision-directed algorithm that preserves

only the best path metrics at each iterative step. As long as the

distortion values that are needed in the path metric computations

are computed in advance of their need, both the distortion and path

,metric computations can be carried out in the same systolic array. .-

Since the distortion values are either absorbed into the path metric
%- %'-.-

computations or discarded as they are used, the computation can

progress through the array as a wavefront leaving empty cells in its

.. wake to provide a fhlly pipelined capability.
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Below we describe the flow of these computations in a two-

dimensional array of only a few cells for purposes of illustration.

The architecture described is readily extrapolated to a larger

array. ~-

4.3.1 Computation of the Array of Distortion Values

Once the test utterance has been partitioned into n overlapping

segments, the jth segment being represented by a vector r(j),

1 < j < n of P + I autocorrelation coefficients of the test segment,

and the reference utterance has been partitioned into m segments

represented by vectors u(i), 1 < i < m, of P + I inverse-autocor-

relation coefficients of reference segments, an m x n grid is formed

with the distortion (cost) dii at each grid point (i,1) being the

scalar product of r(j) and u(i) plus a constant term dependent on

the logarithm of the ratio of the process gains for the Itakura-

Saito distortion function. The DTW algorithm computes the least

cost among paths between grid points (1,1) and (m,n), the cost being

the sum of all distortions dij encountered along the path. For

the Itakura-Saito distortion, we will concentrate first on the

pipelined calculation of the scalar product of the autocorrelat on

vectors and will show later how to incorporate the constant term in

the architecture.

After computation of a distortion value, it must be quantized

to a lower range. The details of such a quantization were discussed

in section 3.4.3.
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In order to pipeline the distortion computation, the correla- ,%

tion vectors r)(j) and u( )(I) flow into a rectangular array of

computational cells as shown illustratively in figures 4.11 and

4.12(a) through 4 .12(g), where a time sequence of data flow Is •

presented for a square array of nine cells. Figure 4.13 shows the

arrangement of the various distortion functions contained in the

array at a given instant of time; the superscripts in both cases

refer to the collection of a set of segments associated with a

particular utterance.

Since the path computations for each pair of test and reference

utterances will proceed as a wavefront making computations on

successive diagonals, the deletion of previously used distortion

values allows pipelining to the extent that distortion functions

associated with a number of utterances equal to the number of

diagonals can be present at any given time, with the path computa-

tions being pipelined along successive diagonals. . :.-..

,.". .~-

In figures 4.11 through 4.13, vectors on the same diagonal .

carry the same superscript and correspond to the same test or

reference utterance. The data proceed in straight lines (test

vectors horizontally and reference vectors vertically) through the

array, and at each time instant each cell (i,j) computes

r(0) (i)
r t(j) u u)(i) = Y ri9.)(Jlu t)(i). -"

n.l
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Performing the distortion computation in RNS suggests a sepa- ?i ::

rate grid for each modulus. The inputs to the kth array are the

residues modulo Pk of the feature vectors, u(i), r(j), from which '' :-"
the residues modulo Pk of the local distortions dij are compu-

ted. In this operation the different arrays work independently and

in parallel. The need for quantization, however, will require r __.,

communication of the residue values prior to path computations.

Figure 4.14 is a simplified block diagram of the computation of

the local distortion in a residue channel modulo p. As the

components of the test and reference correlation vectors enter thefrom"whic

multiplier, the modulo p product of corresponding components
accumulates. A flag bit can be attached to u( ) to clear the

accumulator at the beginning of every new segment. w r e

With our 13-pole model, the computation of the comptation o

12 '- '' "u(i) r(j) a Un(i) rn(j) mod p (4.2)

n--0

requirents of te tt n and 12 addt ions, which, if performed in
a pipeline, require 13 pm + 12 s seconds, where m and Ts

are the times, in seconds, required for one residue multiplication

and one residue addition, respectively.coput
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4.3.1.1 Quantization of the Distortion Values

Next, the scalar product of u(i) and r(j) is quantized to a

smaller range spanned by three moduli. Quantization operates on all

- residues of the scalar product. (A block diagram of this operation

is given in figure 4.15). At this point, the constant terms
2 2

logof and logog which may be attached to r(j) and u(i)

respectively before entering the array, may be added, converted to

the three-modulus RNS and added to the quantized version of u(i)

r(j) to complete the computation of dij.

2
The computation of -logof can be performed outside RNS in . ..-.

parallel with the computation of r(j). The term loglg can be

stored with u(i) in the reference library. A method of logarithm

generation is given in [101.

Quantization involves all the residues of u(i) • r(j), so

communication between residue channels is required. Each residue of

u(i) • r(j) is entered into a table, so in our five-modulus RNS

there are five tables. The outputs of the first two tables are

called Q, and Q2 , and lie in [O,pl-I] and [O,P 2-1], respectively.

Each of the other three tables outputs two symbols, ak, bk, k =

1, 2, 3, where ak is in [O,pl- 11 and bk is in [O,p 2 -l]. Then

the quantities

3
sI = Q1 + 7, ak mod p, (4.3)

k= 1
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and

3
8 2+ ~'bk mod P2  (4.4)

k=l

are computed. After that, s2 is reduced modulo Pi and

t -- s1 - s2[ p (4.5)
t, * s*- P 1

is computed. This quantity is then entered into a table whose

output is the quantized product.

For one quantization, five table lookups are first performed,

in parallel, to produce eight quantities. These are separated into

two groups of four quantities, and all four quantities in each group

are added by a tree adder. In this manner s, and s2 are produced.

Next -s2 lpl is computed from s2 by a table lookup. Finally, an

addition is performed to compute t and one more table lookup is done

to give the final result. The time required to perform one

quantizatton is then 3Tt + 3T. seconds, where Tt is the time

required for one table lookup and, as before, Ts is the time .

required for one residue addition.

1251
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4.3.2 Shortest Path Computations
V -le J.

Once the distortion values are available for use, a dynamic a" ".

programming algorithm is used to find the shortest, or least distor-

tion, path through the DTW grid. Since the distortion values are

quantized to a few levels, as discussed in section 3, the path com-

putations can be carried out in RNS with path differences generally

small enough to be contained within the largest modulus of the RNS,

occasional overflows not causing catastrophic harm.

To discuss a systolic architecture for these computations it

will be convenient to temporarily set aside the pipelining of the

distortion computations discussed in section 4.3.2. For the present

discussion, we will assume that all the distortion values for a .

particular pair of utterances are available in the array and

describe the pipelined data flow of the path computations in the

same array. It will then be evident that both the distortion and

*- path computations can be synchronously pipelined in the same DTW

array.

The optimality principle of dynamic programming states that if

a path of minimal cost between two points a and c passes through

., point b, then the portion of the path that goes from point a to

point b is optimal too, among paths from a to b. In accordance with

this principle, in the DTW algorithm, cell (i,j) computes the cost

of the optimal path starting at (1,1) and ending in itself. This is

done iteratively, all cells along the same diagonal computing at the

same time. Cell (1,I) computes d1l and calls it cll, the minimum

cost to get to cell (1,I). Next the cells on the second diagonal,

cells (2,1) and (1,2), compute d21 and d1 2 respectively and add it

to cll to produce c21 and c12 . Then the cells on the third diagonal

do the same thing. This time cell (2,2) considers two possible

126
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cells from which a path can emanate, namely cells (2,1) and (1,2)

and computes c 2 2 = d 2 2 + min(c 1 2 ,c 21 ). Global constraints will

restrict the number of cells to be considered, while local

constraints will restrict the number of paths to each cell.

In general, according to type 3 local path constraints dis-

cussed in section 3, each cell considers at most four cells from

which a path to it can emanate, i.e., cell (i,j) computes

cjj = dij + min(ci-2,-I + d-l,j, ci-2,j-2

+ d -lI j, Cil,j I , ci-l,j_2). (4.6)

For this to be possible, the four path costs must be available

at the input of cell (ij) when the cells on its diagonal are ready

to compute. This is clearly possible since the four path costs are

on diagonals that have already completed computation. In the physi- X.

cal array all data move horizontally or vertically, and diagonal . -

communication--e.g., the communication of cpll,jI from cell

(i-l,j-l) to cell (i,j)--is done through cell (i,j-l). At each step

on such a path, the data advance one diagonal. All data being

operated on, or computed, corresponding to one pair of utterances,

lie on the same diagonal.

From this observation, it follows that the distortion values on

a given diagonal need not be available until the computational wave-

front has reached that diagonal and this can be managed by the

pipelined scheme already discussed for the distortion computations.

Hence, the DTW can be completely pipelined, with each diagonal P1-WA
handling one pair of utterances. From cell (m,n) the scores of the

pairs of utterances compared will then emerge one-by-one.

127

'.'.',:'-1

o°. ," °. . , •' , " -° - % °" ,°' . -° - o . ° o , ~ o -. ', '° ". -'O ." '. ,- - ,o . . - , , , , % . ." . . % - ' • . , °. . • " • .,, . '" . o o ° " '.° -S



- . . - .~ - - -4 . "b ° ,

Figure 4.16 shows a typical cell in the DTW grid. The computa- "' ''

tion of cij is done in two steps so that actually only three quan- '".

tities previously computed are fed to each cell ( i-l,j is the

minimum of ci 2 , j-I 
+  di-l, j and ei 2 , J-2 

+  di-i ) A s , ''" %

ci-l, j is not used by cell (i,j) but is passed along from cell " '".-

(i-l,J) to cell (i,j+l). Similarly, ci-l,j_ 1 is passed to the 'i '''

cell above, after it has been used by cell (i,J). Finally, cij is , ,

computed and passed to cell (i+l,J). Thus, in addition to inputs :.--'.

* .

r(j) and u(j), which get passed along after their scalar product is.

computed, each cell accepts four inputs and produces four outputs.

Figure 4.17 shows a sequence of data flow for the path

computation between two utterances in a 3-by-3 DTW array q For

purposes of illustration, the local distortion values di, j are
shown to exist throughout the array prior to being used in the

computation, but it is clear that only distortion values on the

diagonal performing computations are required, and hence that the --

process can be pipelined. - -2

Each cell receives four path weight symbols (two from the cell

below and two from the cell on the left) and likewise outputs four

symbols. The generation of these quantities is shown in figure i

4.17. As the computational front progresses, each computing
diagonal has available all the required inputs and computes alls
outputs required by the next diagonalt flwfrtep

The complete process, the aggregate of local distortion compu-

tatgon, path computation and ppelrning, is shown for two adjacent

pairs of utterances in figure 4.18.
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The path computations are carried out in several residue .

channels, but the local path decisions, which require the computa-

tion of two minimums, are made using only one residue channel. The

decisions are then communicated to the other channels.

The required operations are

ci,j = dij + min(cil,j-l,ci-1,j-2)

ci,j = min(ci,j,dij + Ci-lj)"

Each minimization involves one residue addition and two seven-bit

table lookups. Computation of cij then takes 2
T s + 2T t

seconds. The sum indicated inside the parentheses in the second

*. equation can be performed in parallel with the computation of

i ci,j, so that the computation of cij contributes 2Ts + 2T t

: ~~seconds. ,'-'.

A block diagram of the cell operations that follow the compu-

tation of dij is given in figure 4.19. The two dashed boxes

contain the decision making portion of the minimizations, and only

one set of these is required per cell. Each residue channel

contains a set of selectors, which receive the two quantities being

minimized, as well as the decision signal which carries one bit of

tInformation.
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4.3.3 Interconnection Concepts a$

A solution to the seemingly difficult wiring problem required

by the communication between the (typically S0-by-50) arrays corre-

* sponding to the different residues is to define the basic cell so

that it contains all the residues, as in figure 4.20. The wiring

indicated in the figure could be carried on two levels, with all

horizontal lines on one level and all vertical lines on the other

* one. All path computations could be performed in the central, and

largest of all the cells.

All lines indicated are one-bit lines, with all data being*

1.,. %4.t

transmitted serially at high speed. Each one of the five data lines

on each side of the cell would be used to shift in 13 seven-bit

symbols, with the central one shifting two additional seven-bit path

cost symbols. This gives a total of 20 data lines, and, on any

aline, no more than 105 bits would have to be transmitted during one

iteration. Assuming a 20 MHz one-bit shifting rate between one chip

to another, this could be done in about 5 microseconds.
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4.3.4 Estimate of Throughput

The diagram in figure 4.21 shows the DTW cell operation on a

time scale; the times indicated are based on the following table of

estimated basic operation times.

7-bit residue adder Ts = 84 ns

7-bit residue multiplier Em = 300 ns -

7-bit input, 14-bit output rt = 100 ns

table look-up (PLA

1-bit shift Tb = 50 ns L

The duration of the cell operating cycle is determined by the input

data shift, which in turn is determined by the input-output pin

limitation. If one cell is to occupy one VLSI IC, then two pins are

required for VDD and ground, two pins for a two-phase clock, at

least 20 pins for data and some more for testing. A 40-pin DIP

could be used, which would have a few additional pins that could be

used to speed up the data flow. An alternative is to put nine cells

in a 3-by-3 array on an 84-pin PGA (Pin Grid Array), in which case

the minimum number of required data lines would be 60. From figure

4.21 we see that the other operations can be performed in 13Tm and

1
7
TS seconds or about 5ps, so we conclude that one DTW output (one

comparison between a pair of utterances) would be produced every

5ps. For a (fast) speaking rate of ten utterances per second, a

20,000 word library could be scanned for every utterance. The

process could also be speeded up by doing more than one multiplica-

tion and addition in parallel when forming the scalar product of .- "

u(i) and r(j).
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4.4 SUMMARY

Figure 4.22 depicts schematically a DTW array with pipelined r-j

inputs. The test inputs are provided by a bank of three correlators -

as discussed previously, while the reference vectors are taken from

a stored library. The commutator sorts the auto.orrelation vectors

produced by the correlators, and the cells shown serve to provide

the appropriate skew to the input data of the DTW array. It is

assumed that the logarithms of the process gains (computed sepa-

rately and converted to RNS form using the three moduli which

provide the range for the DTW computation) are included with the

correlation vectors for implementation of the Itakura-Saito metric. '.. -

Finally, the DTW output must be converted to a weighted number .'. * -,

system, possibly in mixed radix form before the different scores are

normalized and compared.
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SECTION 5 * .14

CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY

In the previous paragraphs we have reported on our work over -

the preceding year to demonstrate the effectiveness of the combina-

tion of RNS computations and systolic array architectures for the

improved implementation of speech recognition algorithms, improve-

ment being assessed with regard to throughput and complexity of

hardware implementation. From our work we conclude that RNS does

indeed have utility for implementing a dynamic time-warping word

recognition algorithm driven by autoregressive spectral analysis and

the Itakura-Saito distortion computation. We showed how the combi-

nation of RNS and systolic arrays could be used to effectively

implement:

The autocorrelation estimates used in autoregressive

(or LPC) spectral analysis;

Computation of the Itakura-Saito distortion values;

Dynamic time-warping least-cost path-metric computa-

tions.

The incorporation of the distortion computations with the path-

metric computations in a pipelined two-dimensional systolic array

was shown to have a favorable impact in providing a high throughput

for the most computationally intensive part of the recognition

algorithm. .

S. . -_ . +.".
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These investigations were supported by the development of a

computer simulation which was used extensively for experimentation

with an eleven-word vocabulary, three to six different productions

of each word being stored in a reference library to accommodate

variations in utterance of the same word. From our experiments, we

developed a means of reducing the dynamic range of the path-metric

computations by quantization of the distortion values within RNS. A

good means of narrowing the range of distortion values seems

critical to successful RNS implementation.

A number of different distortion functions have been studied

and reported in the speech processing literature; many of them are

[191. Experimental results have largely shown, in our opinion, that

different metrics of this sort are roughly equivalent, although a

ranking based on small improvements could be contemplated [3]. Much

* of the interest in LPG stems from its success in modeling the speech

production process in a noise-free environment, but it is known that

* the all-zero linear prediction model breaks down in the presence of

* additive noise [19].

From our point of view, not only must the distortion measure

produce satisfactory discrimination in a narrow range of values, it

must also be suitable for RNS computations. For speech recognition,

the purpose of the spectral analysis and distortion computation is

to distill the information contained in the speech waveform into a '

small set of data suitable for low-error discrimination between

* distinct word patterns, and not to preserve information needed for

* high-grade speech synthesis. Thus, the LPC methods may be unneces-

sarily stringent for speech recognition purposes, while weak in the

.4 presence of noise, and at the same time imposing the need for high-

* precision, and therefore large dynamic-range, computations.
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While we remain convinced by the results of our work that RNS

implementation has high potential for speech recognition, we are

also convinced that substantial improvement in reducing the gross

dynamic range of the distortion computations, without sacrificing

discrimination ability, is required before RNS implementation will

be accepted as a truly practical or attractive alternative to

conventional architectures that use floating-point computation.

This will require a re-assessment of the distortion function used to

support the DTW computations. Some alternative distortion function

computations that could be considered in a follow-on effort are

discussed briefly below.

5.2 ALTERNATIVES FOR DISTORTION COIPUTATION

In our work, we chose the LPC analysis and Itakura-Saito

distortion for the reasons discussed in section 1, but perceive the

need to experiment with other distortion functions in any follow-on

effort. It is particularly perplexing that the path-metric

computations can be successfully carried out with very coarse

quantization of the distortion values, while our implementation of

the Itakura-Saito metric shows a need to maintain a much larger .

range for its computation. .. '.-
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5.2.1 Itakura Distortion ,

One variation of the Itakura-Saito distortion function, some-

times called the gain-optimized Itakura-Saito distortion, was origi-

nally recommended by Itakura [211. Its distinguishing feature is

the use of a logarithmic function of the ratio of the linear predic-

tion residuals. It provides a measure that is roughly proportional A

to the logarithm of the Itakura-Saito (or maximum likelihood)

distortion. As such, it has the desirable attribute of compressing

the range of distortion values. Hardware implementation of this

method has been reported in the literature in which the logarithmic

distortion values are confined to the range of a few bits and in

which the path metric computations are carried out with 16-bit

fixed-point arithmetic [10]. The key to that implementation is the

simplicity of a logarithmic quantizer based on a geometric series

representation of the logarithm in a form that is amenable to hard-

ware implementation (with roughly 200 logic gates). The referenced

work points out the feasibility of compressing the range of the

Itakura-Saito distortion values (computed with 24-bit precision),

but it is not directly of value to our RNS implementation. Since we

would like to pipeline the distortion computations in the same RNS

systolic array that is used for the path-metric computations, we

would need to invent a logarithmic converter in RNS, and that is not

a likely prospect.
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5.2.2 Euclidean Distance Measures

Squared Euclidean distance, or equivalently mean-squared error,

while traditional in signal processing work, has tended to be !

rejected in recent speech research on the subjective grounds that it .

is not sufficiently meaningful for representing what are thought to .

be the requirements of auditory perception. It is pointed out that

the ear needs only to recognize the random process producing the "V.- S-7.'

waveform to within some accuracy and does not need to accurately

reproduce the specific waveform, and that demanding a small

mean-squared error in a speech system will often require far more

bits and accuracy than the human ear requires [21]. The success of

the LPC methods can be attributed to the corresponding distortion

measures (such as Itakura-Saito's) that measure in a probabilistic

sense the closeness of the original and reproduced processes or

models rather than the actual waveforms.

Mean-squared error, however, cannot be rejected on the grounds

that it is too forgiving. If we base our analysis on power spectra,

or equivalently autocorrelation analysis, then Euclidean distance

may still be useful to discriminate spectral patterns for purposes

of automatic speech recognition. For RNS implementation, we prefer

squared Euclidean distance since it avoids the need for explicit

* sign detection which would suggest leaving RNS for that purpose.

The utility of this measure will then depend on our ability to

contain the range of values to a practical size. Two approaches

that use squared Euclidean distance will be discussed briefly.
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5.2.2.1 Log Spectral Deviation

One of the oldest distortion measures proposed for speech is Q

formed by the norm of the difference of the logarithms of the

power spectra. Assuming the spectral envelopes have been sampled

and scaled logarithmically, the L2 norm is simply the squared Eucli-

dean distance between the vectors of logarithmic spectral samples.

One of the traditional ways of providing the spectral envelopes is

by means of a bank of constant-Q filters appropriately spaced across

the speech spectrum, the output of each filter's power being sampled

in time and scaled logarithmically [22]. Such a filter bank is

probably best implemented with analog-sampled switched-capacitor

active filters rather than in the form of digital filters; thus we

would not propose to use RNS for the filter bank, but would convert

the log-spectral samples to RNS code for computation of the squared

Euclidean distortion in a systolic array of the type described in

section 4. .'. ,

Another means of performing the filter-bank analysis would be

to perform a discrete Fourier transform (DFT) of the windowed speech

samples with a moderately high resolution (perhaps 256 to 1024

samples per frame), subdivide the samples into appropriate bands

over which the complex DFT samples are to be squared and summed,

compute the power in each sub-band and convert to logarithmic form.

With the exception of logarithmic conversion, all of the processing

could be carried out with RNS. Logarithmic conversion would require

reconversion to a weighted number system (which would probably be

needed for spectral normalization anyway) followed by reconversion

to RNS for the distortion computation. These processing steps would

clearly be more complicated than the computation of the autocorrela-

tion samples described in section 4, but the operations would need

. . . . .. .. . . . . . . . . .
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to be performed only once for each test segment and the method A

should be worthy of consideration for future effort.

5.2.2.2 Direct Autocorrelation Analysis

Although the autocorrelation coefficients of the windowed

speech samples could be transformed by DFT to provide a representa-

tion of the spectral envelope, it may be better to use them directly

for spectral discrimination. As shown in section 2, all of the

processing for estimating LPC coefficients and computing the

Itakura-Saito distortion is carried out in the time domain, without ,_

any specific need for the frequency spectra. While LPC analysis is ,- ..

used to approximate the spectral envelope, as represented by the

all-pole linear filter model, it is essentially a linear transforma-

tion of a subset of autocorrelation coefficients. The assumption of

an all-pole model of the speech production process allows this sub-

set of autocorrelation values to accurately approximate the remain-

Ing ones in accordance with the autoregressive nature of the model.

This is the basis for obtaining a good spectral approximation.

If the LPC model is adequate, then for the purpose of automatic -. '*

speech recognition it may be satisfactory to employ the subset of

autocorrelation coefficients used in LPC analysis directly in a '

squared Euclidean distance computation. For RNS implementation,

since it would be appropriate to work with normalized correlation

coefficients, it would be necessary to leave RNS to carry out the

normalization and then reconvert to RNS for the distance computa-

tions. But, such a technique for distortion computation might

actually be simpler to implement than the Itakura-Saito distortion

and there would be no need to solve the normal equations for
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construction of the reference library. Also, if the number of

samples used is extended beyond the LPC subset, then the dependence

on the assumption of an autoregressive model is diminished.

5.3 FOLLOW-ON RECOKMENDATIONS

In any follow-on effort we would propose to experimentally

study the feasibility of using a squared-Euclidean metric, rather

than the Itakura-Saito distortion, for RNS implementation of the

distortion computations. The spectral envelope and direct auto-

correlation methods discussed above would be a starting point for

such investigations. A critical issue is the dynamic range imposed

by the square-law measure, particularly when comparing dissimilar

words. We must recognize, however, that occasional overflow of the

computation range, in which RNS converts the statistical outliers to

values lying in a valid range, is probably tolerated in the path

metric computations, particularly since these events are more likely ...-.

to occur while comparing dissimilar words whose best DTW path

metrics should be relatively large in any case. It would be quite

surprising if the overflows associated with bad word matches were to

conspire to produce a path metric smaller than that of a proper

match.

if either of the methods discussed were to prove viable in

reducing the range of distortion values significantly, then it would

be appropriate to contemplate actual VLSI hardware implementation of

the simplified DTW systolic array, requiring an increased attention . -.

to the details of combinational logic design of the cells of the :.;

array in a follow-on effort.
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Finally, the experimental data base should be expanded beyond

the eleven-word vocabulary used in this study, and many controlled ,

experiments performed, before definitive conclusions regarding RNS

implementation and actual parameter selection can be made. These

are the elements of a follow-on effort we expect to continue in *.-- -

* FY 1985.
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APPENDIX %

RESI[DUE NUMBER sysrF~ms

An RNS with range M = P1P2 .. Pi, where each pk is a prime

integer, called a modulus, is a number system represented by the

integers in the interval [O,M-1] in which addition and

multiplication of two elements x and y is defined as the remainder A

. on division by M of their sum and product, respectively. Under

these operations, the usual sum or product of x and y is obtained,

* provided that the result lies in the same range [0, M - 1]. The

main advantage afforded by RNS is that the complexity of the

operations (measured by the size of a table required to implement

the operations, for instance) is lower than that of the

corresponding integer operations because of the ability to decompose

the processor into a set of independent processors each performing

operations modulo pk [23].

.. .." 4 .-..,

In RNS an integer x in the interval [0,M-i] is represented by

its residues modulo the Pk, i.e.,

x = (K 1 , x2, ... , xi) (A-1)

where xk equals the remainder obtained when x is divided by

Pk;tt follows that, for each k, 0 < xk < Pk- Every number

between 0 and M - 1, inclusively, has a unique RNS representation,

and every Z-vector (xj, x2 , ..., xZ) with 0 < xk < Pk corre- .--

sponds to a unique integer x with 0 < x < M. Furthermore, the sum -.

(prodtuct) of two integers x and y in the RNS can be obtained by

adding (multiplying) corresponding components xk and Yk, modulo

the corresponding 0.
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In this manner, any operation requiring only addition and %.. .

multiplication, the input and output ranges of which are known, can

be implemented in RNS. Since intermediate overflow is harmless,

provided that the final result is contained in [0,M-1], it follows

that the range of the system is solely determined by the range of

the output.

Figure A-I illustrates the architecture of a general RNS

processor. After the input has been converted to RNS form, the

function is implemented by an independent set of processors, each

operating in a different residue channel. Usually, the RNS output

is converted to a weighted number system, but linear operations

could be continued in RNS representation.

A formula relating a positive integer x e [0, M-l] to its RNS

representation (xl, x2 , ... , xt), is given by

x = xiMiMi mod M (A-2)

where Mi = M/pi and Mi is the inverse of Mi modulo pi,
-i

i.e., an integer Mi in the range [0, pi-lI such that .

MiM1 - I mod Pi (A-3)

15. 6

C. ,". ** -- .-- -. 5- * .6 ,. ....-..

"-', ""., . ,, . . . . .- -.- • - - . .. , ." ...... . ... .... .- -,.. . .. "" .. ... -- , .- . .,,.. .- , .. ,.. . .,. ..



- 'Wr

-Ad OW

I 'lo

0z .'aC )

0 0 04

Cc)
LAL

CcwW- 0 w

157.

o 0



b.

For example, if p, 3, P2 =5, and P3 =7, then M1  35,

M2 21, M43 =15, MI = 2, M2 1 1, and M43 = .Now, if x =34,

then (X1, X2, x3 ) = (1, 4, 6) and the formula gives

x 1 35 2 + 4 21 1+ 6 15 l mod 105 -

=244 mod 105 (A-4)

=34 mod 105.

This method of reconstruction, illustrated by (A-4), which is.

an example of the Chinese Remainder Theorem, is useful for * .

theoretical purposes. A more efficient method for obtaining a

weighted number representation of an RNS-coded number is to convert

to a mixed-radix representation using the moduli of the RNS as

radices.

The mixed-radix representation of an integer x in [0, M-1] is .

given by

J.11*J.1

i-6)

x ci ~ (A-5

1591-

i-I j=1



For a three-moduli RNS, equation (A-5) can be written as

x =C 3P2P1 + C2 I + cl. (A-7)

Note that from equation (A-3) we have

c, x mod p,

c2 (x-cl)/Pl mod P2
(A-8)

c 3 E(x -(x-cl)/pl)1P 2  mod P3  .

Equation (A-8) can be generalized to obtain the mixed-radix coeffi-

cients of a given number in an RNS with an arbitrary number of

moduli. A refinement of the resulting equations yields

c, xmod p,

C2 PI (x,) - c 1  mod P2 ~~

c3  p P2 (Pi (X3 -c 1 ) -c 2) mod P3 (A-9)

=t pZ1l(pt12( ... p1(xQ t CI)... -c t 2) c Zi1 mod P

The coefficients cj are derived iteratively by starting with

c,= x, and computing ci by subtracting ci-1 from the result of

the previous iteration and multiplying the difference by pi-1, all

mnodulo pi. -
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Finalythe evaluation of equation (A5 can be done recur-

* sively using Horner's scheme:

x (..((c p 1 + cL ~~ + c, 2 )p 3 .. + CONp + cl (A-1.0)

Efficient VLSI hardware structures that perform pipelined

binary-to-residue and residue-to-binary conversion for a

five-modulus RNS have been designed by MITRE's Integrated

Electronics project for the primes (31,29,23,19,17) representable

* with five bits.
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